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Outline of Talk

1 Introduction and background discussion.

2 Regression models with Fisher error distribution.

3 Regression models with Kent error distribution.

4 Some numerical results.

5 Discussion.
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Data Structure

Data structure : {y1, x1}, . . . , {yn, xn},

where

for each i , yi is a response vector and xi is a covariate vector;

yi ∈ S2 = {yi ∈ R3 : y>i yi = 1}, i.e. yi is a unit vector in 3D space;

the covariate vectors are p-dimensional, i.e. xi ∈ Rp;

it is assumed throughout the talk that y1, . . . , yn are independent;

The main purpose here is to develop parametric regression models on the
sphere in which rotational symmetry of the error distribution is not
assumed.
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Multivariate linear model

Consider the standard multivariate linear model:

Y = XB + E,

where

Y (n × p) is the response matrix;
X (n × q) is the covariate matrix;
B (q × p) is the parameter matrix;
E (n × p) is the unobserved error matrix whose rows are assumed to
be IID with common distribution Np(0,ΣΣΣ).

In this situation, the least squares estimator (and MLE) of B,

B̂ = (X>X)−1X>Y,

does not depend on ΣΣΣ.

However, we would still not want to assume that ΣΣΣ is a scalar multiple of
the identity, which is the analogue of the assumption of rotational
symmetry of the error distribution on the sphere.
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A general covariate vector xi

A second purpose is to develop models which can handle a general
covariate xi ,

i.e. special structure for xi such as xi ∈ S2 or xi ∈ R is not assumed.

The spirit of the modelling here is similar to that often used with
generalised linear models (GLMs).

The use of GLMs is sometimes a bit cavalier in the following respects:

for simplicity and convenience we assume covariate information
combines in linear fashion (i.e. through the ‘linear predictor’) on a
suitable scale (i.e. after applying the ‘link function’);

we do not expect our models to extrapolate well to regions in which
the data are not well represented.

We shall make similar assumptions here.
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Fisher error distribution

We will be focusing on the following two error distributions on the sphere:

Rotationally symmetric case: the Fisher (or von Mises-Fisher)
distribution.

Rotationally asymmetric case: the Kent distribution.

The Fisher distribution has pdf given by

f (y |κ, µ) = cF (κ)−1 exp(κy>µ),

where µ ∈ S2 is a unit vector, the mean direction, and κ ≥ 0 is a
concentration parameter.

In the case of the Fisher distribution, we can construct a regression model
with constant concentration parameter κ, by specifying µ to be of the form

µ = µ(x , γ), µi = µ(xi , γ), i = 1, . . . , n,

with γ a parameter vector, and xi the covariate vector for observation i .
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Particular cases of the Fisher regression model

In cases (i)–(iii) below it is assumed that yi , xi ∈ S2.

Case (i) [Chang, AoS, 1986; Rivest, AoS, 1989]
Here, µi = Axi , where A is an unknown rotation matrix to be estimated.

Case (ii) [Downs, Biometrika, 2003]
A regression model on the sphere based on Möbius transformations.

Case (iii) [Rosenthal et al., JASA, 2014]
In this case,

µi =
Axi

||Axi ||
,

where A is a non-singular 3× 3 matrix to be estimated.
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Particular cases of the Fisher regression model (continued)

Case (iv) In this case,
µi = QRiδ,

where Q is a 3× 3 orthogonal matrix, and δ ∈ S2 is a unit vector. One
way to define the 3× 3 rotation matrix Ri is by

Ri = exp(Ci ), where Ci =

 0 c1i c2i

−c1i 0 c3i

−c2i −c3i 0


is skew-symmetric, and cji = γ>j xi , j = 1, 2, 3.

A second possibility is to define

Ri = (I3 + Ci )(I − Ci )
−1,

which has the advantage that it is not a many-to-one mapping.
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The Kent distribution on S2

Kent (1982) proposed a 5 parameter family which contains the Fisher
family as well as rotationally asymmetric distributions.

This has pdf

f (y ;µ, ξ1, ξ2, κ, β) = cK (κ, β)−1 exp
[
κµ>y + β{(ξ>1 y)2 − (ξ>2 y)2}

]
where

µ, ξ1 and ξ2 are mutually orthogonal unit vectors;

κ ≥ 0 and β ≥ 0 are concentration and shape parameters.

The distribution is unimodal if κ > 2β.
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Motivation for Kent distributions

Datasets in directional statistics and shape analysis are often highly
concentrated.

When highly concentrated datasets are projected onto a suitable
tangent space, a multivariate normal approximation in the tangent
space is often reasonable.

When the Kent distribution is highly concentrated and unimodal, the
induced distribution in the tangent space at the mode is
approximately bivariate normal.
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Orthonormal basis determined by a unit vector

Consider a unit vector

 sin θ cosφ
sin θ sinφ

cos θ

.

Provided sin θ 6= 0, sin θ cosφ
sin θ sinφ

cos θ

 ,

 − sinφ
cosφ

0

 and

 cos θ cosφ
cos θ sinφ
− sin θ

 .

In cartesian coordinates, assuming x2
1 + x2

2 6= 0, we have

 y1

y2

y3

 ,

 −y2/
√

y2
1 + y2

2

y1/
√

y2
1 + y2

2

0

 and


y1y3/

√
y2
1 + y2

2

y2y3/
√
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2

−
√

1− y2
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Model for axes

Given that µi = µ(xi , γ), use the previous slide to define an orthonormal
triple

µi , ξ1i , ξ2i , ξ1i = ξ1i (xi , γ), ξ2i = ξ2i (xi , γ).

Now suppose

yi ∼ Kent(µi , ξ̃1i , ξ̃2i , κ, β), i = 1, . . . , n,

where

ξ̃1i = (cosψi )ξ1i + (sinψi )ξ2i , ξ̃2i = −(sinψi )ξ1i + (cosψi )ξ2i ,

and ψi = ψ(xi , α), i.e. ψi depends on the covariate vector xi and a further
parameter vector α.
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Parameters in the Kent regression model

There are three parameter vectors: α; γ; and (κ, β).

In particular:

The parameter vector γ, along with the covariate vector xi ,
determines the mean direction µi , and also the orthonormal triple
µi , ξ1i and ξ2i .

The parameter vector α, along with xi , determines the angle ψi .
Note that the angle ψi is measured relative to the coordinate system
determined by the orthonormal triple µi , ξ1i and ξ2i , which depends
on i .

The parameters κ ≥ 0 and β ≥ 0 are dispersion parameters. If so
desired, one could allow κ and β to depend on xi and further
parameters, but for simplicity we assume here than κ and β do not
depend on i .
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The log-likelihood under the Kent model

The log-likelihood under the Kent model is given by

`(α, β, γ, κ) = −n log cK (κ, β)+κ
n∑

i=1

y>i µi+β
n∑

i=1

{(
y>i ξ̃1i

)2
−
(
y>i ξ̃2i

)2
}
,

where, as above, µi = µ(xi , γ),

ξ̃1i = (cosψi )ξ1i + (sinψi )ξ2i , ξ̃2i = −(sinψi )ξ1i + (cosψi )ξ2i ,

ξ1i = ξ1i (xi , γ), ξ2i = ξ2i (xi , γ), ψi = ψi (xi , α), and cK (κ, β) is the Kent
normalising constant.

A key point: this construction is generic, in the sense that we can use any
suitable rotationally symmetric Fisher regression model for µi = µ(xi , γ),
and any suitable (double) von Mises model for ψi = ψi )xi , α).
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A structured (or switching) optimisation algorithm

When maximising the log-likelihood, we have found it desirable to cycle
between 3 steps:

Step 1: maximise `(α(m), β(m), γ(m), κ(m)) over γ with α(m), β(m), κ(m)

held fixed, to obtain γ(m+1).

Step 2: maximise `(α(m), β(m), γ(m+1), κ(m)) over α with β(m), γ(m+1)

and κ(m) held fixed, to obtain α(m+1).

Step 3: maximise `(α(m+1), β(m), γ(m+1), κ(m)) over β and κ with α(m+1)

and γ(m+1) held fixed, to obtain β(m+1) and κ(m+1).
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Comments on the algorithm

The normalising constant cK (κ, β) can be calculated exactly (using the
Holonomic gradient method), or approximately, to a high level of accuracy
(using e.g. the Kume and Wood (2005) saddlepoint approximation). So
Step 3 in the algorithm is relatively straightforward.

Step 1 can be performed by modifying (because of the addition of the
‘quadratic’ term) whatever algorithm is used to fit the rotationally
symmetric Fisher model.

Step 2 is equivalent to fitting a weighted (double) von Mises regression
model for the ψi . The weight for observation i is proportional to(

y>i ξ1i

)2
+
(
y>i ξ2i

)2
.

Step 2 is simplified due to the following result.
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A useful lemma

Consider a two-parameter natural exponential family likelihood based on
an IID sample of size n:

`(θ1, θ2) = −n log c(θ1, θ2) + θ1t1 + θ2t2,

where θ1 and θ2 are natural parameters and (t1, t2) is the sufficient
statistic.

Let
h(t̄1, t̄2) = `{θ̂1(t̄1, t̄2), θ̂2(t̄1, t̄2)}

denote the maximised likelihood, viewed as a function of t̄1 = t1/n and
t̄2 = t2/n.

Lemma. h(t̄1, t̄2) is an increasing function of t̄1 at (t̄1, t̄2) if and only if
θ̂1 = θ̂1(t̄1, t̄2) is strictly positive at (t̄1, t̄2).
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Application of the lemma

An application of the lemma to Step 2 of the computation algorithm
shows that, because β ≥ 0, Step 2 is equivalent to maximising over α the
‘quadratic’ term in the log likelihood, namely

n∑
i=1

{(
y>i ξ̃1i

)2
−
(
y>i ξ̃2i

)2
}
.

This is equivalent to maximising the log-likelihood of a weighted (double)
von Mises regression model.
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An alternative approach

Recall the Fisher regression model in Case (iv):

yi ∼ Fisher(µi , κ),

where µi = QRiδ with Q and Ri (3× 3) rotational matrices and
delta ∈ S2.

We could modify to a Kent distribution by writing

yi ∼ Kent(µi , ξ1i , ξ2i , κ, β),

where µi , ξ1i and ξ2i are an orthonormal triple determined by

QRi = (µi , ξ1i , ξ2i ),

with Ri = R(xi , γ).
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Animal (seal) tracking data

Some numerical results from the animal movement tracking data found in
Jonsen et al. (2005).

Estimated parameters and log-likelihood for the Fisher and Kent regression
models assuming linear predictor is linear in time.

Fisher

log-likelihood = 377.6, κ̂ = 602.2

γ̂ = (−0.00035,−0.00419,−0.01159)>

Kent

log-likelihood = 432.8, κ̂ = 1744.1, β̂ = 713.367

γ̂ = (−0.00052,−0.00443,−0.01203)>
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Animal (seal) tracking data plot
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A single simulated example
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γ = (−0.02, 0.03, 0.004)>

γ̂ = (−0.0192, 0.0304, 0.0164)>

True κ = 50 and estimated κ, κ̂, is 43.41 with n = 50.

The xi are scalars from a normal with mean 0 and standard deviation 10.

The latitude goes from 4 to 66.8 degrees and the longitude from 9 to 329
degrees.
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Some simulation results

Some simulation results from the Fisher model under Case (iv).

 True betas -0.02 0.03 0.004  

  Estimated Betas 
Estimated 

kappa 

N=50 
Kappa=20 -0.0200 0.03010 0.00360 21.432 

Kappa=50 -0.0199 0.03010 0.00370 53.595 

N=100 
Kappa=20 -0.0201 0.02997 0.00398 20.669 

Kappa=50 -0.01995 0.03002 0.00401 52.074 

Table 1: Estimated parameters (averages over 500 simulations). 

 

 Root mean squared errors 

  Estimated Betas 
Estimated 

kappa 

N=50 
Kappa=20 0.0023 0.0024 0.0090 3.5874 

Kappa=50 0.0016 0.0014 0.0055 8.3020 

N=100 
Kappa=20 0.00101 0.0009 0.0015 2.1865 

Kappa=50 0.00063 0.00055  0.00084 5.6865 

Table 2: Square root of the MSEs of the parameters (500 simulations) 
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