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Definition

Throughout, the data points X1, . . . ,Xn are i.i.d with a FvML
distribution characterized by a density function (with respect to the
usual surface area measure on spheres) of the form

fθθθ(x) = ck,κ exp(κx′θθθ), (1.1)

where x ∈ Sk−1, θθθ ∈ Sk−1 is a location parameter, κ > 0 is a
concentration parameter and ck,κ is a normalizing constant.
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Definition

If X1, . . . ,Xn are i.i.d. with density (1.1), then the cosines
X′1θθθ, . . . ,X

′
nθθθ are i.i.d. with density

t 7→ f̃κ(t) := Ck,f1,κ exp(κt)(1− t2)(k−3)/2, −1 ≤ t ≤ 1.

As a direct consequence, the parameter κ is clearly identified using
the identity

E[X] = E[X′θθθ]θθθ =: Ak(κ)θθθ =

(∫ 1

−1
teκt(1− t2)

k−3
2∫ 1

−1
eκt(1− t2)

k−3
2

)
θθθ,

where, letting Iq(v) stand for the modified Bessel function of first kind
and of order q, Ak is defined by Ak(.) := Ik/2(.)/Ik/2−1(.) ; one readily
obtains that κ := A−1

k (E[X′θθθ]).
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ULAN property

In the sequel, we write P
(n)
ϑϑϑ or when it is relevant P

(n)
(θθθ,κ) for the joint

cdf of X1, . . . ,Xn with parameter ϑϑϑ = (θθθ′, κ)′ ∈ΘΘΘ := Sk−1 × R+.
The model P

(n)
ϑϑϑ is called ULAN if for any sequence ϑϑϑ(n) ∈ΘΘΘ such that

ϑϑϑ(n) − ϑϑϑ = O(n−1/2), the likelihood ratio between Pϑϑϑ(n)+n−1/2τττ(n) and
Pϑϑϑ(n) allows a specific form of (probabilistic) Taylor expansion as a
function of the perturbation τττ (n). Therefore, to provide such a
property, we have to clearly define the local perturbations τττ (n) ;
τττ (n) =: ((t(n))′, c(n))′.
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ULAN property

The perturbations τττ (n) =: ((t(n))′, c(n))′ must be chosen so that
(θθθ′, κ)′ + n−1/2((t(n))′, c(n))′ remains on ΘΘΘ = Sk−1 × R+. Thus, in
particular, t(n) need to satisfy

0 = (θθθ + n−1/2t(n))′(θθθ + n−1/2t(n))− 1

= 2n−1/2θθθ′t(n) + n−1(t(n))′t(n). (1.2)

Consequently, t(n) must be such that 2n−1/2θθθ′t(n) + o(n−1/2) = 0 : for
θθθ + n−1/2t(n) to remain in Sk−1, the perturbation t(n) must belong, up
to a o(n−1/2) quantity, to the tangent space to Sk−1 at θθθ. For the
“κ-part" of the perturbation, we simply restrict to sequences c(n) such
that κ+ n−1/2c(n) remains strictly positive. We have the following
result.
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ULAN property

Proposition

The family
{

P
(n)

ϑϑϑ
| ϑϑϑ ∈ ϑϑϑ

}
is ULAN ; that is for any sequence ϑϑϑ(n) ∈ ΘΘΘ such that

ϑϑϑ(n) − ϑϑϑ = O(n−1/2) and any bounded sequence τττ(n) as described in (1.2), under P
ϑϑϑ(n) as

n→∞. The central sequence ∆∆∆
(n)

ϑϑϑ
:=
(
∆∆∆

(I)′
ϑϑϑ

,∆
(II)

ϑϑϑ

)′
is defined by

∆∆∆
(I)

ϑϑϑϑϑϑϑϑϑ
:= κn

−1/2
n∑
i=1

(1− (X
′
iθθθ)

2
)
1/2

Sθθθ(Xi),

and

∆
(II)

ϑϑϑϑϑϑϑϑϑ
:= n

−1/2
n∑
i=1

X
′
iθθθ − E

[
X
′
iθθθ
]
.

The associated Fisher information is given by ΓΓΓϑϑϑ := diag
(
ΓΓΓ

(I)

ϑϑϑ
,Γ

(II)

ϑϑϑ

)
, where, putting

Jk(κ) :=
∫ 1
−1

(1− u2)f̃κ(u)du,

ΓΓΓ
(I)

ϑϑϑ
:=

κ2Jk(κ)

k − 1
(Ik − θθθθθθ′) and Γ

(II)

ϑϑϑ
:= E[(X

′
iθθθ)

2
]− E

2
[(X
′
iθθθ)].
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One-sample case

The score test of Watamori and Jupp (2005) for the null hypothesis
H0 : κ = κ0 rejects the null at asymptotic nominal level α when
(X̄ := n−1/2

∑n
i=1 Xi)

Q(n)
κ0

:=

(
n‖X̄‖ −A−1

k (κ0)
)2

n(1− k−1
κ0
Ak(κ0)− (Ak(κ0))2)

exceeds the α-upper quantile of the chi-square distribution with 1
degree of freedom.
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One-sample case

Proposition

We have that
(i) Q(n)

κ0 is asymptotically chi-square with 1 degree of freedom under
∪θθθ∈Sk−1P

(n)
(κ0,θθθ)

;

(ii) Q(n)
κ0 is asymptotically non-central chi-square with 1 degree of

freedom and non-centrality parameter
(1− k−1

κ0
Ak(κ0)− (Ak(κ0))2)c2 under ∪θθθ∈Sk−1P

(n)

(κ0+n−1/2c(n),θθθ)
,

where c := limn→∞ c(n).
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Multi-sample case

Let us assume that the samples (Xi1, . . . ,Xini), i = 1, . . . ,m, are
independent samples of i.i.d. random vectors such that the ni
observations Xij , j = 1, . . . , ni, in sample i have a FvML density with
concentration κi and location θθθi. We denote this time by P

(n)

ϑϑϑ(m) the
joint distribution of (X11, . . . ,Xmnm), with
ϑϑϑ(m) := (κ1, . . . , κm, θθθ

′
1, . . . , θθθ

′
m)′ ∈ (R+

0 )m × (Sk−1)m.

It is easy to show that under some mild assumptions, this model is
also ULAN.
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Multi-sample case

The score test of Watamori and Jupp (2005) for the null hypothesis
H0 : κ1 = . . . = κm rejects the null at asymptotic nominal level α
when (D̂k := 1− k−1

κ̂ Ak(κ̂)− (Ak(κ̂))2)

Q
(n)
Hom := D̂−1

k

 m∑
i=1

ni‖X̄i‖2 −
1

n

(
m∑
i=1

ni‖X̄i‖

)2


exceeds the α-upper quantile of the chi-square distribution with m− 1
degrees of freedom.
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Multi-sample case

Proposition

Let Assumption A. Then

(i) Q(n)
Hom is asymptotically chi-square with m− 1 degrees of freedom

under
⋃
ϑϑϑ(m)∈HHom

0
P

(n)
ϑϑϑm ;

(ii) Letting c := limn→∞(c
(n)
1 , . . . , c

(n)
m )′, Q(n)

Hom is asymptotically
non-central chi-square with m− 1 degrees of freedom and
non-centrality parameter

lHom = c′ΓΓΓ
(II)

ϑϑϑ(m)(ΓΓΓ
(II)

ϑϑϑ(m))
⊥ΓΓΓ

(II)

ϑϑϑ(m)c

under P
(n)

ϑϑϑm+n−1/2ννν(n)τττ(n) with ϑϑϑm ∈ HHom
0 and

ϑϑϑm + n−1/2ννν(n)τττ (n) /∈ HHom
0
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Using ranks

The Watamori and Jupp test for the homogeneity of concentrations
H0 : κ1 = . . . = κm is based on the FvML assumption. Clearly, testing
H0 : κ1 = . . . = κm is completely equivalent to test
H0 : E[X′1θθθ1] = . . . = E[X′mθθθm].

Now, simple computations entail that

Q
(n)
Hom = D−1

k

 m∑
i=1

ni(θθθ
′
iX̄i)

2 − 1

n

(
m∑
i=1

niθθθ
′
iX̄i

)2
+ oP(1).

If you replace the “X′ijθθθi” in the formula above by their ranks, you
obtain a Kruskal-Wallis type test for the homogeneity of
concentrations.
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Using ranks

More precisely, letting Rij(θθθ) be the (univariate rank) of X′ijθθθi among
the cosines

X′11θθθ1, . . . ,X
′
1n1
θθθ1,X

′
21θθθ2, . . . ,X

′
mnmθθθm

and R̄i := n−1
i

∑ni
j=1Rij(θθθ) ,we can consider the statistic

Q
(n)
Hom(KKW) :=

12

(n+ 1)2

m∑
i=1

ni

(
R̄i −

n+ 1

2

)2

which is nothing but (up to an irrelevant (n+ 1)/n factor) the
traditional rank-based Kruskal-Wallis test statistic (see Kruskal (1952)
and Kruskal and Wallis (1952)).
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Using ranks

When the location parameters are known, we have the finite-sample
distribution of this Kruskal-Wallis type test.

The substitution of θθθ1, . . . , θθθm by root-n consistent estimators do not
have any asymptotic cost.

The corresponding test which rejects the null when Q(n)
Hom(KKW)

exceeds the α-upper quantile of the chi-square distribution with m− 1
degrees of freedom is validity-robust.
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Using ranks
Power curve of the Watamori and Jupp (2005) test and the Kruskal-Wallis type test under Fisher-von Mises-Langevin distributions
with θθθ1 = (1, 0)′ and θθθ2 = (−1, 0)′ . The concentration under the null is κ = 2. Sample sizes are n1 = 200 and
n2 = 250.The number of replications is 10000.
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Using ranks
Power curve of the Watamori and Jupp (2005) test under wrapped-Cauchy distributions with θθθ1 = (1, 0)′ and θθθ2 = (−1, 0)′ . The
concentration under the null is κ = .5. Sample sizes are n1 = 200 and n2 = 250.The number of replications is 10000.
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Thank you !
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