Tests for the concentration based on LAN properties

Thomas Verdebout (Université Lille 3)

joint work with Ch. Ley

ADISTA 14 May 20–22 2014

< ロ > < 同 > < 三 > < 三 >

Outline

The concentration in the FVML case

2 Local powers of testing procedures in the FVML case

Validity-robust tests for the homogeneity of concentrations

Local powers of testing procedures in the FVML case References

Outline

The concentration in the FVML case

< □ > < 同 > < 回 > < 回

Local powers of testing procedures in the FVML case Validity-robust tests for the homogeneity of concentrations References

Definition

Throughout, the data points X_1, \ldots, X_n are i.i.d with a FvML distribution characterized by a density function (with respect to the usual surface area measure on spheres) of the form

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = c_{k,\kappa} \, \exp(\kappa \mathbf{x}' \boldsymbol{\theta}), \tag{1.1}$$

where $\mathbf{x} \in S_{k-1}$, $\boldsymbol{\theta} \in S^{k-1}$ is a location parameter, $\kappa > 0$ is a concentration parameter and $c_{k,\kappa}$ is a normalizing constant.

Local powers of testing procedures in the FVML case Validity-robust tests for the homogeneity of concentrations References

Definition

If X_1, \ldots, X_n are i.i.d. with density (1.1), then the cosines $X'_1\theta, \ldots, X'_n\theta$ are i.i.d. with density

$$t \mapsto \tilde{f}_{\kappa}(t) := C_{k, f_1, \kappa} \exp(\kappa t) (1 - t^2)^{(k-3)/2}, \quad -1 \le t \le 1.$$

As a direct consequence, the parameter κ is clearly identified using the identity

$$\mathbf{E}[\mathbf{X}] = \mathbf{E}[\mathbf{X}'\boldsymbol{\theta}]\boldsymbol{\theta} =: A_k(\kappa)\boldsymbol{\theta} = \left(\frac{\int_{-1}^1 t e^{\kappa t} (1-t^2)^{\frac{k-3}{2}}}{\int_{-1}^1 e^{\kappa t} (1-t^2)^{\frac{k-3}{2}}}\right)\boldsymbol{\theta},$$

where, letting $I_q(v)$ stand for the modified Bessel function of first kind and of order q, A_k is defined by $A_k(.) := I_{k/2}(.)/I_{k/2-1}(.)$; one readily obtains that $\kappa := A_k^{-1}(\mathbf{E}[\mathbf{X}'\boldsymbol{\theta}]).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local powers of testing procedures in the FVML case Validity-robust tests for the homogeneity of concentrations References

ULAN property

In the sequel, we write $P_{\vartheta}^{(n)}$ or when it is relevant $P_{(\vartheta,\kappa)}^{(n)}$ for the joint cdf of $\mathbf{X}_1, \ldots, \mathbf{X}_n$ with parameter $\vartheta = (\theta', \kappa)' \in \Theta := S^{k-1} \times \mathbb{R}^+$. The model $P_{\vartheta}^{(n)}$ is called ULAN if for any sequence $\vartheta^{(n)} \in \Theta$ such that $\vartheta^{(n)} - \vartheta = O(n^{-1/2})$, the likelihood ratio between $P_{\vartheta^{(n)}+n^{-1/2}\tau^{(n)}}$ and $P_{\vartheta^{(n)}}$ allows a specific form of (probabilistic) Taylor expansion as a function of the perturbation $\tau^{(n)}$. Therefore, to provide such a property, we have to clearly define the local perturbations $\tau^{(n)}$; $\tau^{(n)} =: ((\mathbf{t}^{(n)})', c^{(n)})'$.

6 / 23

Local powers of testing procedures in the FVML case Validity-robust tests for the homogeneity of concentrations References

ULAN property

The perturbations $\boldsymbol{\tau}^{(n)} =: ((\mathbf{t}^{(n)})', c^{(n)})'$ must be chosen so that $(\boldsymbol{\theta}', \kappa)' + n^{-1/2}((\mathbf{t}^{(n)})', c^{(n)})'$ remains on $\boldsymbol{\Theta} = \mathcal{S}^{k-1} \times \mathbb{R}^+$. Thus, in particular, $\mathbf{t}^{(n)}$ need to satisfy

$$0 = (\boldsymbol{\theta} + n^{-1/2} \mathbf{t}^{(n)})'(\boldsymbol{\theta} + n^{-1/2} \mathbf{t}^{(n)}) - 1$$

= $2n^{-1/2} \boldsymbol{\theta}' \mathbf{t}^{(n)} + n^{-1} (\mathbf{t}^{(n)})' \mathbf{t}^{(n)}.$ (1.2)

Consequently, $\mathbf{t}^{(n)}$ must be such that $2n^{-1/2}\boldsymbol{\theta}'\mathbf{t}^{(n)} + o(n^{-1/2}) = 0$: for $\boldsymbol{\theta} + n^{-1/2}\mathbf{t}^{(n)}$ to remain in \mathcal{S}^{k-1} , the perturbation $\mathbf{t}^{(n)}$ must belong, up to a $o(n^{-1/2})$ quantity, to the tangent space to \mathcal{S}^{k-1} at $\boldsymbol{\theta}$. For the " κ -part" of the perturbation, we simply restrict to sequences $c^{(n)}$ such that $\kappa + n^{-1/2}c^{(n)}$ remains strictly positive. We have the following result.

・ロ > ・ 何 > ・ 三 > ・ 三 > ・

Local powers of testing procedures in the FVML case Validity-robust tests for the homogeneity of concentrations References

ULAN property

Proposition

The family $\left\{ \mathbf{P}_{\boldsymbol{\vartheta}}^{(n)} \mid \boldsymbol{\vartheta} \in \boldsymbol{\vartheta} \right\}$ is ULAN; that is for any sequence $\boldsymbol{\vartheta}^{(n)} \in \boldsymbol{\Theta}$ such that $\boldsymbol{\vartheta}^{(n)} - \boldsymbol{\vartheta} = O(n^{-1/2})$ and any bounded sequence $\boldsymbol{\tau}^{(n)}$ as described in (1.2), under $\mathbf{P}_{\boldsymbol{\vartheta}^{(n)}}$ as $n \to \infty$. The central sequence $\boldsymbol{\Delta}_{\boldsymbol{\vartheta}}^{(n)} := \left(\boldsymbol{\Delta}_{\boldsymbol{\vartheta}}^{(1)}, \boldsymbol{\Delta}_{\boldsymbol{\vartheta}}^{(11)} \right)'$ is defined by

$$\boldsymbol{\Delta}_{\boldsymbol{\theta}}^{(\mathrm{I})} := \kappa n^{-1/2} \sum_{i=1}^{n} (1 - (\mathbf{X}_{i}^{\prime} \boldsymbol{\theta})^{2})^{1/2} \mathbf{S}_{\boldsymbol{\theta}}(\mathbf{X}_{i}),$$

and

$$\Delta_{\boldsymbol{\theta}}^{(\mathrm{II})} := n^{-1/2} \sum_{i=1}^{n} \mathbf{X}_{i}^{\prime} \boldsymbol{\theta} - \mathrm{E} \left[\mathbf{X}_{i}^{\prime} \boldsymbol{\theta} \right].$$

The associated Fisher information is given by $\Gamma_{\boldsymbol{\vartheta}} := \operatorname{diag}\left(\Gamma_{\boldsymbol{\vartheta}}^{(\mathrm{I})}, \Gamma_{\boldsymbol{\vartheta}}^{(\mathrm{II})}\right)$, where, putting $\mathcal{J}_k(\kappa) := \int_{-1}^1 (1-u^2) \tilde{f}_\kappa(u) du$,

$$\boldsymbol{\Gamma}_{\boldsymbol{\vartheta}}^{(\mathrm{I})} := \frac{\kappa^2 \mathcal{J}_k(\kappa)}{k-1} (\mathbf{I}_k - \boldsymbol{\vartheta} \boldsymbol{\vartheta}') \quad \text{and} \quad \boldsymbol{\Gamma}_{\boldsymbol{\vartheta}}^{(\mathrm{II})} := \mathrm{E}[(\mathbf{X}_i' \boldsymbol{\vartheta})^2] - \mathrm{E}^2[(\mathbf{X}_i' \boldsymbol{\vartheta})].$$

- 2 Local powers of testing procedures in the FVML case
- Validity-robust tests for the homogeneity of concentrations

A References

One-sample case

The score test of Watamori and Jupp (2005) for the null hypothesis $\mathcal{H}_0: \kappa = \kappa_0$ rejects the null at asymptotic nominal level α when $(\bar{\mathbf{X}} := n^{-1/2} \sum_{i=1}^n \mathbf{X}_i)$

$$Q_{\kappa_0}^{(n)} := \frac{\left(n \| \bar{\mathbf{X}} \| - A_k^{-1}(\kappa_0)\right)^2}{n(1 - \frac{k-1}{\kappa_0} A_k(\kappa_0) - (A_k(\kappa_0))^2)}$$

exceeds the α -upper quantile of the chi-square distribution with 1 degree of freedom.

< ロ > < 同 > < 三 > < 三 >

One-sample case

Proposition

We have that

- (i) $Q_{\kappa_0}^{(n)}$ is asymptotically chi-square with 1 degree of freedom under $\cup_{\boldsymbol{\theta}\in \mathcal{S}^{k-1}} P_{(\kappa_0,\boldsymbol{\theta})}^{(n)}$;
- (ii) $Q_{\kappa_0}^{(n)}$ is asymptotically non-central chi-square with 1 degree of freedom and non-centrality parameter $(1 - \frac{k-1}{\kappa_0}A_k(\kappa_0) - (A_k(\kappa_0))^2)c^2$ under $\cup_{\boldsymbol{\theta}\in\mathcal{S}^{k-1}} \mathrm{P}_{(\kappa_0+n^{-1/2}c^{(n)},\boldsymbol{\theta})}^{(n)}$,

where $c := \lim_{n \to \infty} c^{(n)}$.

Multi-sample case

Let us assume that the samples $(\mathbf{X}_{i1}, \ldots, \mathbf{X}_{in_i})$, $i = 1, \ldots, m$, are independent samples of i.i.d. random vectors such that the n_i observations \mathbf{X}_{ij} , $j = 1, \ldots, n_i$, in sample *i* have a FvML density with concentration κ_i and location $\boldsymbol{\theta}_i$. We denote this time by $P_{\boldsymbol{\vartheta}^{(m)}}^{(n)}$ the joint distribution of $(\mathbf{X}_{11}, \ldots, \mathbf{X}_{mn_m})$, with $\boldsymbol{\vartheta}^{(m)} := (\kappa_1, \ldots, \kappa_m, \boldsymbol{\theta}'_1, \ldots, \boldsymbol{\theta}'_m)' \in (\mathbb{R}^+_0)^m \times (\mathcal{S}^{k-1})^m$.

It is easy to show that under some mild assumptions, this model is also ULAN.

> < 同 > < 三 > < 三 >

Multi-sample case

The score test of Watamori and Jupp (2005) for the null hypothesis $\mathcal{H}_0: \kappa_1 = \ldots = \kappa_m$ rejects the null at asymptotic nominal level α when $(\hat{D}_k := 1 - \frac{k-1}{\hat{\kappa}} A_k(\hat{\kappa}) - (A_k(\hat{\kappa}))^2)$

$$Q_{\text{Hom}}^{(n)} := \hat{D}_k^{-1} \left(\sum_{i=1}^m n_i \| \bar{\mathbf{X}}_i \|^2 - \frac{1}{n} \left(\sum_{i=1}^m n_i \| \bar{\mathbf{X}}_i \| \right)^2 \right)$$

exceeds the $\alpha\text{-upper}$ quantile of the chi-square distribution with m-1 degrees of freedom.

< ロ > < 同 > < 三 > < 三 >

13 / 23

Multi-sample case

Proposition

Let Assumption A. Then

- (i) Q⁽ⁿ⁾_{Hom} is asymptotically chi-square with m − 1 degrees of freedom under U_∂^(m)∈H^{Hom}_∂ P⁽ⁿ⁾_∂;
- (ii) Letting $\mathbf{c} := \lim_{n \to \infty} (c_1^{(n)}, \dots, c_m^{(n)})'$, $Q_{\text{Hom}}^{(n)}$ is asymptotically non-central chi-square with m 1 degrees of freedom and non-centrality parameter

$$l_{\mathrm{Hom}} = \mathbf{c}' \Gamma^{(\mathrm{II})}_{\boldsymbol{\vartheta}^{(m)}} (\Gamma^{(\mathrm{II})}_{\boldsymbol{\vartheta}^{(m)}})^{\perp} \Gamma^{(\mathrm{II})}_{\boldsymbol{\vartheta}^{(m)}} \mathbf{c}$$

under $P_{\boldsymbol{\vartheta}^m+n^{-1/2}\boldsymbol{\nu}^{(n)}\boldsymbol{\tau}^{(n)}}^{(n)}$ with $\boldsymbol{\vartheta}^m \in \mathcal{H}_0^{\operatorname{Hom}}$ and $\boldsymbol{\vartheta}^m + n^{-1/2}\boldsymbol{\nu}^{(n)}\boldsymbol{\tau}^{(n)} \notin \mathcal{H}_0^{\operatorname{Hom}}$

Outline

2 Local powers of testing procedures in the FVML case

Validity-robust tests for the homogeneity of concentrations

4 References

< □ > < 同 > < 回 > < 回

Using ranks

The Watamori and Jupp test for the homogeneity of concentrations $\mathcal{H}_0: \kappa_1 = \ldots = \kappa_m$ is based on the FvML assumption. Clearly, testing $\mathcal{H}_0: \kappa_1 = \ldots = \kappa_m$ is completely equivalent to test $\mathcal{H}_0: \mathrm{E}[\mathbf{X}'_1\boldsymbol{\theta}_1] = \ldots = \mathrm{E}[\mathbf{X}'_m\boldsymbol{\theta}_m].$

Now, simple computations entail that

$$Q_{\text{Hom}}^{(n)} = D_k^{-1} \left(\sum_{i=1}^m n_i (\theta_i' \bar{\mathbf{X}}_i)^2 - \frac{1}{n} \left(\sum_{i=1}^m n_i \theta_i' \bar{\mathbf{X}}_i \right)^2 \right) + o_{\text{P}}(1).$$

If you replace the " $\mathbf{X}'_{ij}\boldsymbol{\theta}_i$ " in the formula above by their ranks, you obtain a Kruskal-Wallis type test for the homogeneity of concentrations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using ranks

More precisely, letting $R_{ij}(\theta)$ be the (univariate rank) of $\mathbf{X}'_{ij}\theta_i$ among the cosines

$$\mathbf{X}_{11}^{\prime} \boldsymbol{\theta}_1, \dots, \mathbf{X}_{1n_1}^{\prime} \boldsymbol{\theta}_1, \mathbf{X}_{21}^{\prime} \boldsymbol{\theta}_2, \dots, \mathbf{X}_{mn_m}^{\prime} \boldsymbol{\theta}_m$$

and $ar{R}_i := n_i^{-1} \sum_{j=1}^{n_i} R_{ij}(\pmb{ heta})$,we can consider the statistic

$$Q_{\text{Hom}}^{(n)}(K_{\text{KW}}) := \frac{12}{(n+1)^2} \sum_{i=1}^m n_i \left(\bar{R}_i - \frac{n+1}{2}\right)^2$$

which is nothing but (up to an irrelevant (n + 1)/n factor) the traditional rank-based Kruskal-Wallis test statistic (see Kruskal (1952) and Kruskal and Wallis (1952)).

Using ranks

When the location parameters are known, we have the finite-sample distribution of this Kruskal-Wallis type test.

The substitution of $\theta_1, \ldots, \theta_m$ by root-*n* consistent estimators do not have any asymptotic cost.

The corresponding test which rejects the null when $Q_{\text{Hom}}^{(n)}(K_{\text{KW}})$ exceeds the α -upper quantile of the chi-square distribution with m-1 degrees of freedom is *validity-robust*.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Using ranks

Power curve of the Watamori and Jupp (2005) test and the Kruskal-Wallis type test under Fisher-von Mises-Langevin distributions with $\theta_1 = (1, 0)'$ and $\theta_2 = (-1, 0)'$. The concentration under the null is $\kappa = 2$. Sample sizes are $n_1 = 200$ and $n_2 = 250$. The number of replications is 10000.

Power curves (test for homogeneity)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Using ranks

Power curve of the Watamori and Jupp (2005) test under wrapped-Cauchy distributions with $\boldsymbol{\theta}_1 = (1, 0)'$ and $\boldsymbol{\theta}_2 = (-1, 0)'$. The concentration under the null is $\kappa = .5$. Sample sizes are $n_1 = 200$ and $n_2 = 250$. The number of replications is 10000.

Power curves (test for homogeneity)

Outline

- Local powers of testing procedures in the FVML case
- 3 Validity-robust tests for the homogeneity of concentrations

< □ > < 同 > < 回 > < 回

- Watamori, Y. and Jupp, P. E. (2005). Improved likelihood ratio and score tests on concentration parameters of von Mises-Fisher distributions. *Statistics and Probability Letters* **72**, 93–102.
- Ch.Ley, Y.Swan, B. Thiam and T.Verdebout (2013). Optimal R-estimation of a spherical location. *Statistica Sinica*, **23**(1), 305-333 (2013).
- Ch. Ley and T. Verdebout (2014). Local powers of optimal oneand multi-sample tests for the concentration of Fisher-von Mises-Langevin distributions. *International Statistical Review*, to appear.
- T.Verdebout (2014). On a Kruskal-Wallis type test for the equality of concentrations. *Work in progress*

< ロ > < 同 > < 三 > < 三 >

Thank you !

23 / 23

2

イロト イヨト イヨト イヨト