BAYESIAN SUPERPOSITIONS WITH MCMC SAMPLING

ADISTA 2014 Brussels, Belgium 22 May 2014

Douglas Theobald Department of Biochemistry Brandeis University

theobald.brandeis.edu

Brandeis University

The bacteriorhodopsin/GPCR superfold

Historic Protein Data Bank growth

Year

S

Structure

of Total

Yearly Growth

Malate and lactate dehydrogenases

~40% sequence identity over > 300 residues

Morphometrics: Hominid crania

Three hominid skulls, 131 landmarks

Morphological features can be different sizes, so these involve scaling

Superposing fits structures together

Superposition = "optimal" relative orientation of two or more corresponding sets of atoms

Least-squares: Find the rotation that minimizes the sum of <u>squared</u> distances between corresponding atoms

Classic superposition method: Least-squares

Least-squares: Find the rotation that minimizes the sum of <u>squared</u> distances between <u>corresponding</u> (labelled) atoms

Why least-squares? (and why not?)

Gauss-Markov Theorem

Least-squares gives the "best" (BLUE) answer if:

Atoms have equal variance
 Atoms are uncorrelated

Andrey Markov

Structural models are imprecise: Experimental error and molecular dynamics

X-ray crystal structures:

B-factors

NMR structures:

Families

Potl, an OB-fold

CdcI3, another OB-fold

Model-based alternatives to least-squares: Maximum Likelihood (ML) and Bayes

Model-based methods:

- Assume a statistical model for the data (e.g., a Gaussian distribution).
- Estimate parameters of your model from the observed data
- ML: Find parameters that predict the data with the highest probability
- Bayes: Find distribution of the parameters given the data

$$\mathrm{p}\left(x|\mu,\sigma
ight)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2\sigma^{2}}(x-\mu)^{2}}$$

Two parameters in Gaussian PDF: μ = location parameter (mean) σ = width parameter

Superposition likelihood function: Gaussian probability distribution of the data

 X_i is the ith molecular structure (k × 3 matrix) -- n structures, k atoms Perturbation model

$$\mathbf{X}_i = rac{1}{eta_i} \left(\mathbf{M} + \mathbf{E}_i
ight) \mathbf{R}'_i - \mathbf{1}_k t'_i \qquad \qquad \mathbf{E}_i \sim \mathrm{N}_{k,d}(\mathbf{0}, \mathbf{\Sigma}, \mathbf{I})$$

Likelihood

$$p\left(\mathbf{X}|\mathbf{\Sigma}, \mathbf{M}, \mathbf{R}, t, \beta\right) = C \exp\left(-\frac{1}{2}\sum_{i}^{n} \operatorname{tr}\left\{[\mathbf{Y}_{i} - \mathbf{M}]'\mathbf{\Sigma}^{-1}[\mathbf{Y}_{i} - \mathbf{M}]\right\}\right)$$
$$C = (2\pi)^{-\frac{kdn}{2}} \left(\prod_{i}^{n} \beta_{i}^{kd}\right) |\mathbf{\Sigma}|^{-\frac{dn}{2}} \qquad \mathbf{Y}_{i} = (\beta_{i}\mathbf{X}_{i} + \mathbf{1}_{k}t'_{i})\mathbf{R}_{i}$$

t_i is its translation (3-vector)
R_i is its rotation (3 × 3 matrix)
β_i is its scaling factor
Σ is the overall covariance matrix (k × k matrix)
M is the overall mean structure (k × 3 matrix)

unknown parameters

Superposition likelihood function: Gaussian probability distribution of the data

 X_i is the ith molecular structure (k × 3 matrix) -- n structures, k atoms Perturbation model

$$\mathbf{X}_i = rac{1}{eta_i} \left(\mathbf{M} + \mathbf{E}_i
ight) \mathbf{R}'_i - \mathbf{1}_k t'_i$$
 $\mathbf{E}_i \sim \mathrm{N}_{k,d}(\mathbf{0}, \mathbf{\Sigma}, \mathbf{I})$

Likelihood

$$p(\mathbf{X}|\mathbf{\Sigma}, \mathbf{M}, \mathbf{R}, t, \beta) = C \exp\left(-\frac{1}{2}\sum_{i}^{n} \operatorname{tr}\left\{[\mathbf{Y}_{i} - \mathbf{M}]'\mathbf{\Sigma}^{-1}[\mathbf{Y}_{i} - \mathbf{M}]\right\}\right)$$

$$C = (2\pi)^{-\frac{kdn}{2}} \left(\prod_{i}^{n} \beta_{i}^{kd}\right) |\mathbf{\Sigma}|^{-\frac{dn}{2}} \qquad \mathbf{Y}_{i} = (\beta_{i}\mathbf{X}_{i} + \mathbf{1}_{k}t'_{i})\mathbf{R}_{i}$$

Hierarchical prior on Σ

$$\boldsymbol{\Sigma} \sim \mathrm{IW}\left(\boldsymbol{\Phi}, n, k\right)$$

$$p\left(\mathbf{\Sigma}|\mathbf{\Phi}, n, k\right) = \frac{|\mathbf{\Phi}|^{\frac{n}{2}}}{2^{\frac{nk}{2}} |\mathbf{\Sigma}|^{\left(\frac{n}{2}+1\right)} \Gamma\left(\frac{n}{2}\right)^{k}} \exp\left\{-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Phi}\mathbf{\Sigma}^{-1}\right)\right\}$$

$$\mathbf{\Phi} = \phi \mathbf{I}$$

Superposition marginal likelihood function: "Scaled" matrix *t*-distribution

 $\mathbf{X}_{i} \sim \mathrm{MT}\left(\mathbf{M}, \mathbf{R}, t, \phi, n, k, \beta\right)$

$$p\left(\mathbf{X}_{i}|\mathbf{M},\mathbf{R},\boldsymbol{t},\phi,n,k,\beta\right) = \left(\prod_{i}^{k} \beta_{i}^{kd}\right) \Gamma\left(\frac{3n+1}{2}\right)^{k} \pi^{-k\left(\frac{3n+1}{2}\right)} \phi^{\frac{k}{2}} \left|\phi\mathbf{I} + (\mathbf{I} \odot \mathbf{S})\right|^{-\frac{3n+1}{2}}$$

$$egin{aligned} oldsymbol{\Phi} &= \phi \mathbf{I} \ \mathbf{S} &= \sum_{i}^{N} [\mathbf{Y}_{i} - \mathbf{M}] [\mathbf{Y}_{i} - \mathbf{M}] \ \mathbf{Y}_{i} &= (eta_{i} \mathbf{X}_{i} + \mathbf{1}_{k} t_{i}') \mathbf{R}_{i} \end{aligned}$$

Empirical Bayes EM ML superposition solutions

$$\hat{m{t}}_i = -rac{{m{1}'_K {m{\Sigma}^{-1} {m{X}}_i }}}{{m{1}'_K {m{\Sigma}^{-1} {m{1}}_K }}} \qquad extbf{ ilde{X}}_i = {m{X}}_i + {m{1}}_K \hat{m{t}}_i$$

Translations

 $\hat{\mathbf{M}}' \hat{\mathbf{\Sigma}}^{-1} \check{\mathbf{X}}_i = \mathbf{U} \mathbf{\Lambda} \mathbf{V}'$ $\hat{\mathbf{R}}_i = \mathbf{V} \mathbf{P} \mathbf{U}'$

N

Rotations - found with Singular Value Decomposition

 $E(\mathbf{\Sigma}^{-1}|\mathbf{X}, \boldsymbol{t}, \mathbf{R}, \boldsymbol{\beta}, \mathbf{M}, \phi, n) = (3N+n)(\mathbf{S}+\phi\mathbf{I})^{-1}$

Covariance matrix

$$\begin{split} \mathbf{S} &= \sum_{i} [\mathbf{Y}_{i} - \mathbf{M}] [\mathbf{Y}_{i} - \mathbf{M}]' \qquad \mathbf{Y}_{i} = (\beta_{i} \mathbf{X}_{i} + \mathbf{1}_{k} t'_{i}) \mathbf{R}_{i} \\ \hat{\alpha} &= \frac{K}{2 \operatorname{tr} (\mathbf{\Sigma}^{-1})} \\ \hat{\mathbf{M}} &= \frac{1}{N} \sum_{i}^{N} \check{\mathbf{X}}_{i} \mathbf{R}_{i} \end{split}$$
Mean structure

Must be solved simultaneously (CM & EM algorithm) Our program THESEUS implements this method (<u>www.theseus3d.org</u>)

Theobald and Wuttke (2006) PNAS 103:1852, Theobald and Wuttke (2006) Bioinformatics 22:2171, Theobald and Wuttke (2008) PLoS Comput Biol 4:e43

Why Theseus? Superpositioning is a Procrustes problem

Procrustes

Procrustean Bed

Maximum likelihood superpositions

2sdf: cytokine stromal cell-derived factor-1 (SDF-1) 67 aa, 30 NMR models

Least-squares

Maximum likelihood

LS vs ML: Maximum likelihood recovers the true covariance matrix accurately

Benefits of Bayes

The object of Bayesian inference: Provide a full joint distribution of model parameters

- Complete distribution of parameters, including uncertainty
- Uses all relevant information, including prior info
- Complex models, marginal distributions for "nuisance parameters"
- Solutions for underdetermined and "problematic" models
- Bayesian solutions are exact for finite sample sizes (unlike ML)

Marginalization: How Bayesians ignore important but uninteresting parameters

$$\mathbf{p}(\boldsymbol{\theta}|\boldsymbol{x},\boldsymbol{M}) = \int_{\boldsymbol{\phi}} \mathbf{p}(\boldsymbol{\theta},\boldsymbol{\phi}|\boldsymbol{x},\boldsymbol{M}) \; d\boldsymbol{\phi}$$

Bayesian analysis of multiple superpositioning

Assume independent priors on each parameter:

- Uniform improper priors on mean M, translations t_i
- Uniform proper prior on rotations R_i
- Exponential prior on scale factor β_i
- Isotropic: Reference prior on isotropic variance ϕ
- Nonisotropic: Vague proper prior on hyper-parameter λ

 $p(\mathbf{\Sigma}) \propto p(\mathbf{\Sigma}|\mathbf{\Psi}, n) p(\mathbf{\Psi}).$

 $p(\boldsymbol{\Sigma}, \boldsymbol{M}, \boldsymbol{R}, \boldsymbol{t}, \boldsymbol{\beta} | \boldsymbol{X}) \propto p(\boldsymbol{X} | \boldsymbol{\Sigma}, \boldsymbol{M}, \boldsymbol{R}, \boldsymbol{t}, \boldsymbol{\beta}) p(\boldsymbol{\beta}) p(\boldsymbol{M}) p(\boldsymbol{R}) p(\boldsymbol{t}) p(\boldsymbol{\Sigma} | \boldsymbol{\Psi}, \boldsymbol{n}) p(\boldsymbol{\Psi})$

Analytic solutions for all conditional distributions CEM for Maximum *A Posteriori* estimation Gibbs/MCMC sampling for full Bayesian solution

Conditional distribution for the mean: Matrix normal

$$\begin{split} \mathbf{M} &\sim \mathrm{N}_{k,d}(\mathbf{B},\mathbf{\Omega},\mathbf{I}_d) \\ \mathbf{\Omega}_{\mathrm{ref}} &= \frac{1}{N} \mathbf{\Sigma} \\ \mathbf{B}_{\mathrm{ref}} &= \frac{1}{N} \sum_{i}^{N} \mathbf{Y}_i \\ \mathbf{Y}_i &= (\beta_i \mathbf{X}_i + \mathbf{1}_k t_i') \mathbf{R}_i \end{split}$$

A matrix normal distribution -- with uniform reference prior, it is centered on the sample average (the ML estimate)

Conditional distribution for translations: Multivariate normal

$$\left \{ egin{array}{c} oldsymbol{t}_i \sim \mathrm{N}_{d,1}(au_i, heta_i) \end{array}
ight \}$$

$$\tau_i = -\frac{\mathbf{1}'_k \mathbf{\Sigma}^{-1} \mathbf{X}_i}{\mathbf{1}'_k \mathbf{\Sigma}^{-1} \mathbf{1}_k}$$
$$\theta_i = \frac{1}{\beta_i^2 \left(\alpha + \mathbf{1}'_k \mathbf{\Sigma}^{-1} \mathbf{1}_k\right)}$$

A multivariate normal distribution: With uniform reference prior, it is centered on the the ML estimate (the weighted centroid)

Conditional distribution for nonisotropic covariance matrix: Inverse Wishart

Assume a conjugate hierarchical prior for covariance matrix, a diagonal, isotropic inverse Wishart distribution

$$\begin{split} \underbrace{\mathbf{\Sigma} \sim \mathrm{IW} \left(\mathbf{\Psi} + \mathbf{S}, k(n+2) \right)}_{n} \\ \mathbf{S} &= \sum_{i}^{n} [\mathbf{Y}_{i} - \mathbf{M}]' [\mathbf{Y}_{i} - \mathbf{M}] \\ \mathbf{Y}_{i} &= (\beta_{i} \mathbf{X}_{i} + \mathbf{1}_{k} t'_{i}) \mathbf{R}_{i} \\ \mathbf{\Psi} &= \lambda \mathbf{I} \end{split}$$

Must assume a proper prior for the hyper-parameter λ , here a conjugate gamma distribution with scale param δ and shape param p

$$\overbrace{\lambda \sim G\left(\frac{2}{\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} + \frac{2}{\delta}\right)}, \frac{k^2 + 2p}{2}\right)}$$

Conditional scale distribution: Halfnormal-gamma

Mardia et al. (2013) Annals of Applied Statistics 7(2): 989–1009.

Conditional distribution for rotations: Matrix Fisher

$$\left(\begin{array}{c} \mathbf{R}_i \sim \mathrm{MF}(\mathbf{A}_i) \end{array} \right)$$

 $\mathbf{A}_i = \mathbf{M}' \mathbf{\Sigma}^{-1} \check{\mathbf{X}}_i$

Matrix Fisher centered on the ML estimate (using proper, uniform prior on rotations)

Sampled using:

(1) hybrid Gibbs/Metropolis-Hastings algorithm of Green and Mardia, or

- (2) Gibbs using Habeck algorithm, or
- (3) Kent's BACG A/R algorithm

Green and Mardia (2006) Biometrika 93:235. Habeck (2009) Comput Stat (2009) 24:719. Kent, Ganeiber, and Mardia (2013) arXiv:1310.8110

Gibbs/MCMC sampling for nonisotropic scaling

Initialize chain with ordinary LS superposition

$$\lambda \sim G\left(\frac{k^2 + 2p}{2}, \frac{2}{\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} + \frac{2}{\delta}\right)}\right)$$

$$\boldsymbol{\Sigma} \sim \text{IW}\left(\boldsymbol{\Psi} + \mathbf{S}, k(n+2)\right)$$

 $\mathbf{M} \sim \mathrm{N}_{k,d}(\mathbf{B}, \mathbf{\Omega}, \mathbf{I}_d)$

 $\boldsymbol{t}_i \sim \mathrm{N}_{d,1}(\tau_i, \theta_i)$

 $\mathbf{R}_i \sim \mathrm{MF}(\mathbf{A}_i)$

 $\beta_i \sim \text{HNG}(\omega_i, \gamma_i, m)$

Gibbs/MCMC results for nonisotropic protein superposition, no scaling

2sdf: cytokine stromal cell-derived factor-1 (SDF-1)

67 aa, 30 NMR models

Bayes: 10,000 subsamples, 1,000,000 generations

Regular ML

Ln Likelihood across samples

Posterior translations, structure 20

Posterior rotation angles, structure 20

40 hominoid crania, 30 landmarks, w/scaling

27 modern humans
9 Homo erectus
I Homo habilis
I Neanderthal
2 Australopithecus bosiei

Data set kindly supplied by Karen Baab, SUNY Stony Brook

Isotropic superposition: Scaling comparisons

LS, no scaling ML, scaling

LS, scaling

Bayes, scaling

Bayesian superpositions, with and without scaling

Nonisotropic, no scaling

The People

Catherine Ackley

Collaborators

Kanti Mardia, Leeds University

Thomas Hamelryck, University of Copenhagen

Mackenzie Gallegos

Michelle Fry

Joe Jacobowitz

Brian Beckett

Marion Peyrega

Funding

National Institutes of Health

R01-GM094468

R01-GM096053

Bayesian superpositions, with and without scaling

Isotropic, no scaling

Nonisotropic, no scaling

Protein Folds and Structural Taxonomy

SCOP: Structural Classification Of Proteins

http://scop.berkeley.edu/

FOLD = specific arrangement of secondary structure elements & specific connectivity

Fold growth in the PDB

ear ≻

Pe

Frequency of novel folds is decreasing

Today's chance of new fold: 10⁻³ to 10⁻⁴

Gibbs/MCMC sampling for isotropic scaling

Initialize chain with ordinary LS superposition $\phi \sim IG\left(S, \frac{3nk}{2}\right)$

 $\mathbf{M} \sim N_{k,d}(\mathbf{B}, \mathbf{\Omega}, \mathbf{I}_d)$

 $\boldsymbol{t}_i \sim \mathrm{N}_{d,1}(\tau_i, \theta_i)$

 $\mathbf{R}_i \sim \mathrm{MF}(\mathbf{A}_i)$

 $\beta_i \sim \text{HNG}(\omega_i, \gamma_i, m)$

This is the "Bayesian version" of Generalized Procrustes Analysis Conditional distribution for isotropic covariance matrix: Inverse Gamma

 $\Sigma_{\rm iso} = \phi \mathbf{I},$

$$\left(\phi \sim \mathrm{IG}\left(S, \frac{3nk}{2}\right)\right)$$

$$S = rac{1}{2} \sum_{i}^{n} \operatorname{tr} \left\{ [\mathbf{Y}_{i} - \mathbf{M}]' [\mathbf{Y}_{i} - \mathbf{M}]
ight\}$$

An inverse gamma distribution centered with scale parameter equal to the sum of squares

Membrane protein folds: Same story

Isotropic vs nonisotropic

No correlations, all variances equal = "isotropic"

 $\Sigma_{\rm iso} = \phi \mathbf{I},$

Isotropic ML is equivalent to ordinary least squares

Unequal variances and/or correlations = "nonisotropic" An arbitrary covariance matrix

$$\hat{\boldsymbol{\Sigma}}_{U} = \frac{1}{3N} \sum_{i}^{N} (\check{\mathbf{X}}_{i} \mathbf{R}_{i} - \hat{\mathbf{M}}) (\check{\mathbf{X}}_{i} \mathbf{R}_{i} - \hat{\mathbf{M}})'$$

Covariance matrix

Posterior distribution of covariance matrix and its hyperparameter λ

Posterior distribution of mean scale factor

Future directions

- Better sampling for halfnormal-gamma
- MCMCMC (heated chains)
- Unlabeled problems (match matrix)
- Incorporate sequence information
- Evolutionary models of structural change

Some folds are much more populated

11,211 domains (no similarity to anything else)
 1194 folds
 first 12 folds are over 25% of domains
 first 56 folds are over 50% of domains

Superfolds

Superfolds

The TIM barrel superfold

- eight α - β repeats
- right handed connectivity

- 1992 different TIM domains
- 373 with E > 0.01
- 158 with E > 10 (!!)

Bayes: LS vs ML vs Bayes scaling, isotropic

EM for smallest variance from an inverse gamma distribution

$$\hat{\alpha} = \frac{K}{2\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)}$$

expected inverse of the smallest variances

$$\hat{\alpha} = \frac{K}{2\left(\sum_{i}^{K-1} \left(\lambda_{i}^{-1}\right) + \mathcal{E}\left(\lambda_{K}^{-1}\right)\right)}$$
$$\mathcal{E}\left(\lambda_{K}^{-1}\right) = \mathcal{E}\left(\lambda_{K}^{-1} | \lambda_{K} < c = \lambda_{K-1}\right) = \frac{\Gamma\left(\frac{3}{2}, \frac{\alpha}{c}\right)}{\alpha \Gamma\left(\frac{1}{2}, \frac{\alpha}{c}\right)}$$

Must be solved simultaneously

Likelihood function including scaling parameters

$$C = (2\pi)^{-\frac{kdn}{2}} \left(\prod_{i}^{n} \beta_{i}^{kd}\right) |\mathbf{\Sigma}|^{-\frac{dn}{2}}$$

 $p(\mathbf{\Sigma}) \propto p(\mathbf{\Sigma}|\mathbf{\Psi}, n) p(\mathbf{\Psi}).$

 $p(\boldsymbol{\Sigma}, \mathbf{M}, \mathbf{R}, \boldsymbol{t}, \boldsymbol{\beta} | \mathbf{X}) \propto p(\mathbf{X} | \boldsymbol{\Sigma}, \mathbf{M}, \mathbf{R}, \boldsymbol{t}, \boldsymbol{\beta}) p(\boldsymbol{\beta}) p(\mathbf{M}) p(\mathbf{R}) p(\boldsymbol{t}) p(\boldsymbol{\Sigma} | \boldsymbol{\Psi}, \boldsymbol{n}) p(\boldsymbol{\Psi})$

Non-isotropic, diagonal, covariance matrix

Assume a conjugate hierarchical prior for covariance matrix, a diagonal, isotropic inverse Wishart distribution

$$p\left(\mathbf{\Sigma}|\mathbf{\Psi}=\phi\mathbf{I},n,K\right) = \frac{\phi^{\frac{nK}{2}}}{2^{\frac{nK}{2}}|\mathbf{\Sigma}|^{\left(\frac{n}{2}+1\right)}\Gamma(\frac{n}{2})^{K}} \exp\left\{-\frac{\phi}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\right)\right\}$$
$$p\left(\mathbf{\Sigma}|\mathbf{X},\mathbf{M},\mathbf{R},t,\phi\right) = \frac{|\mathbf{A}|^{\frac{k}{2}}}{2^{\frac{kK}{2}}|\mathbf{\Sigma}|^{\left(\frac{k}{2}+1\right)}\Gamma\left(\frac{k}{2}\right)^{K}} \exp\left\{-\frac{1}{2}\operatorname{tr}\left(\mathbf{A}\mathbf{\Sigma}^{-1}\right)\right\}$$
$$\mathbf{A} = \mathbf{S} + \phi\mathbf{I}$$
$$k = 3N + n$$

T 7

Must assume a proper prior for the hyper-parameter ϕ , here a conjugate gamma distribution

$$p\left(\phi|\alpha,m\right) \propto \phi^{\frac{m-2}{2}} \exp\left\{-\frac{\phi}{2\alpha}\right\}$$
$$p\left(\phi|\mathbf{X}, \mathbf{\Sigma}, \mathbf{M}, \mathbf{R}, \boldsymbol{t}, n\right) \propto \phi^{\frac{nK+m-2}{2}} \exp\left\{-\frac{\phi}{2}\left[\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\right) + \frac{1}{\alpha}\right]\right\}$$

Bayesian MAP superposition solutions

$$\hat{t}_i = -rac{\mathbf{1}_K' \mathbf{\Sigma}^{-1} \mathbf{X}_i}{\mathbf{1}_K' \mathbf{\Sigma}^{-1} \mathbf{1}_K}$$
 $\check{\mathbf{X}}_i = \mathbf{X}_i + \mathbf{1}_K \hat{t}_i$

 $\hat{\mathbf{M}}' \hat{\mathbf{\Sigma}}^{-1} \check{\mathbf{X}}_i = \mathbf{U} \mathbf{\Lambda} \mathbf{V}'$ $\hat{\mathbf{R}}_i = \mathbf{V} \mathbf{P} \mathbf{U}'$

$$\hat{\mathbf{M}} = \frac{1}{N} \sum_{i}^{N} \check{\mathbf{X}}_{i} \mathbf{R}_{i}$$

 $= \frac{\sum_{i=1}^{N} \operatorname{tr} \left\{ [\mathbf{Y}_{i} - \mathbf{M}]' [\mathbf{Y}_{i} - \mathbf{M}] \right\}}{3NK + 2}$

Rotations - found with Singular Value Decomposition

Translations

Mean structure

Isotropic covariance matrix

$$\hat{\boldsymbol{\Sigma}} = \left(\frac{3N}{3N+n+2}\right) \left(\frac{\phi}{3N}\mathbf{I} + \boldsymbol{\Sigma}_U\right)$$
$$\hat{\phi} = \frac{nK-2}{\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} + \frac{1}{\alpha}\right)}$$

Nonisotropic covariance matrix

Conditional distributions: The translations

Assume uniform improper prior on t_i

$$p(\boldsymbol{t}_i | \mathbf{X}_i, \mathbf{M}, \boldsymbol{\Sigma}, \mathbf{R}_i) = p(\boldsymbol{t}_i | \mathbf{X}_i, \boldsymbol{\Sigma}) = (2\pi\theta)^{-\frac{3}{2}} \exp\left(-\frac{1}{2\theta} \operatorname{tr}\left\{[\boldsymbol{t}_i - \mu_i]'[\boldsymbol{t}_i - \mu_i]\right\}\right)$$

$$\theta = \frac{1}{\mathbf{1}'_{K} \mathbf{\Sigma}^{-1} \mathbf{1}_{K}} \qquad \qquad \theta_{\text{iso}} = \frac{\phi}{K} \qquad [\mathbf{\Sigma}_{\text{iso}} = \phi \mathbf{I}]$$
$$\mu_{i} = -\theta \left(\mathbf{1}'_{K} \mathbf{\Sigma}^{-1} \mathbf{X}_{i}\right) \qquad \qquad \mu_{\text{iso},i} = -\frac{\mathbf{1}'_{K} \mathbf{X}_{i}}{K}$$

A multivariate normal distribution centered on the the ML estimate (the weighted centroid)

Conditional distributions: The rotations

Assume uniform proper prior on R_i

$$p(\mathbf{R}_i | \mathbf{X}_i, \mathbf{\Sigma}, \mathbf{M}) \propto \exp\left(-\frac{1}{2} \operatorname{tr} \{\mathbf{A}_i \mathbf{R}_i\}\right)$$

$$\mathbf{A}_i = \mathbf{M}' \mathbf{\Sigma}^{-1} \mathbf{X}_i$$
 $\mathbf{A}_{\mathrm{iso},i} = rac{1}{\phi} \mathbf{M}' \mathbf{X}_i$

A matrix Fisher-von Mises centered on the ML estimate

Can be sampled using hybrid Gibbs/Metropolis-Hastings algorithm of Green and Mardia

P. Green and K.V. Mardia (2006) "Bayesian alignment using hierarchical models, with applications in protein bioinformatics." Biometrika 93(2):235–254

Five membrane channel structures: Same fold, no sequence similarity

Acknowledgments

Brandeis University Chris Miller Phillip Steindel

University of Colorado Deborah Wuttke

Brandeis University

Posterior mode solution for inverse Wishart priors on the covariance matrix

$$p\left(\mathbf{\Sigma}|\mathbf{\Psi}, n, K\right) = \frac{\left(\frac{n}{2}\right)^{\frac{nK}{2}} |\mathbf{\Psi}|^{\frac{n}{2}}}{|\mathbf{\Sigma}|^{\left(\frac{n}{2}+1\right)} \Gamma(\frac{n}{2})^{K}} e^{\left\{-\frac{n}{2}\operatorname{tr}\left(\mathbf{\Psi}\mathbf{\Sigma}^{-1}\right)\right\}}$$

diagonal inverse Wishart distribution

$$\hat{\boldsymbol{\Sigma}} = \left(\frac{3N}{3N+n+2}\right) \left(\frac{n}{3N}\boldsymbol{\Psi} + \boldsymbol{\Sigma}_U\right)$$
$$\hat{\boldsymbol{\Sigma}}_U = \frac{1}{3N} \sum_{i}^{N} (\tilde{\mathbf{X}}_i \mathbf{R}_i - \hat{\mathbf{M}}) (\tilde{\mathbf{X}}_i \mathbf{R}_i - \hat{\mathbf{M}})'$$

MAP solution: Another "shrunken" covariance matrix:

Macromolecular structures as matrices

A protein PDB file:

x y z

						-
ATOM	90194	0	THR	4	62	26.823 -45.428 -10.835
ATOM	90195	CB	THR	4	62	28.229 -46.671 -8.380
ATOM	90196	0G1	THR	4	62	28.763 -46.387 -7.084
ATOM	90197	CG2	THR	4	62	28.689 -48.047 -8.856
ATOM	90198	N	LYS	4	63	28.700 -46.374 -11.634
ATOM	90199	CA	LYS	4	63	28.125 -46.585 -12.964
ATOM	90200	С	LYS	4	63	27.570 -47.980 -13.095
ATOM	90201	0	LYS	4	63	27.949 -48.876 -12.348
ATOM	90202	CB	LYS	4	63	29.183 -46.388 -14.047
ATOM	90203	CG	LYS	4	63	30.060 -45.159 -13.860
ATOM	90204	CD	LYS	4	63	29.415 -43.870 -14.356
ATOM	90205	CE	LYS	4	63	30.345 -42.678 -14.169
ATOM	90206	NZ	LYS	4	63	29.842 -41.528 -14.953
ATOM	90207	N	LYS	4	64	26.676 -48.171 -14.052
ATOM	90208	CA	LYS	4	64	26.111 -49.488 -14.245
ATOM	90209	С	LYS	4	64	27.043 -50.334 -15.111
ATOM	90210	0	LYS	4	64	27.959 -49.844 -15.770
ATOM	90211	CB	LYS	4	64	24.727 -49.406 -14.900
ATOM	90212	CG	LYS	4	64	23.600 -48.924 -13.991
ATOM	90213	CD	LYS	4	64	22.330 -48.688 -14.795
ATOM	90214	CE	LYS	4	64	21.222 -48.147 -13.911
ATOM	90215	NZ	LYS	4	64	20.019 -47.741 - <mark>14.689</mark>
ATTOM	90216	N	THD	4	65	26 809 -51 628 -15 072

atoms

Structure = K x 3 matrix, K rows of atoms, 3 axes

Classic superposition method: Least-squares

Pairwise superposition

 $SS = \|\mathbf{XR} - \mathbf{Y}\|^2$

$$SS = \operatorname{tr}\left(\left[\mathbf{XR} - \mathbf{Y}\right]'\left[\mathbf{XR} - \mathbf{Y}\right]\right)$$

X is the structure to be superpositioned

R is a 3×3 rotation matrix (orthogonal)

Y is the target structure

F. Boas (1905) "The horizontal plane of the skull and the general problem of the comparison of variable forms." *Science* 21:862

J. von Neumann (1937) "Some matrix-inequalities and metrization of matrix-spaces." *Tomsk Univ Rev* 1:286-300
B.F. Green (1952) "The orthogonal approximation of an oblique structure in factor analysis." *Psychometrika* 17:429
W. Kabsch (1978) "A discussion of the solution for the best rotation to relate two sets of vectors." *Acta Cryst* A34:827

Principal Components Analysis (PCA): Summarize the covariance matrix

- PCA: a method to extract the dominant patterns of correlation found in data.
- Principal component (PC): each major mode of correlation
- Multiple PCs, ranked most important to least.
- Each PC is a vector that assigns a measure of correlation to each atom in a structure

Covariance/correlation matrices are information dense

Benefits of Bayes

- Complete distribution of parameters
- Uses all relevant information, including prior
- Complex models, marginal distributions for "nuisance parameters"
- Solutions for underdetermined and "problematic" models
- Bayes solutions are exact for finite sample sizes

Bayes Theorem

$$\mathbf{p}(\theta|x, M) = \frac{\mathbf{p}(x|\theta, M) \mathbf{p}(\theta|M)}{\mathbf{p}(x|M)}$$

$$p(\theta|x, M) = \int_{\phi} p(\theta, \phi|x, M) \, d\phi$$

Least-squares: Find the rotation that minimizes the sum of <u>squared</u> distances between <u>corresponding</u> (labelled) atoms

Leadzyme: Ordinary vs Weighted Least-Squares

25 models

Least-Squares vs Maximum likelihood: Variances still a problem

Translations and unconstrained variances are "unidentifiable"

Problem: Atoms can be translated so that they perfectly superimpose

Solution: Constrain the variances

Classic superposition method: Least-squares

Multiple simultaneous superpositions for *N* molecules

$$SS = \sum_{i}^{N} \|\mathbf{X}_{i}\mathbf{R}_{i} - \mathbf{M}\|^{2}$$
$$SS = \sum_{i}^{N} \operatorname{tr}\left([\mathbf{X}_{i}\mathbf{R}_{i} - \mathbf{M}]' [\mathbf{X}_{i}\mathbf{R}_{i} - \mathbf{M}]\right)$$

X is a structure to be superpositioned

R is a 3×3 rotation matrix

M is the average structure

ML method down-weights variable regions

1adz: Kunitz domain 2 of Tissue Factor Pathway Inhibitor 71 aa, 30 NMR models

Least-squares

Maximum likelihood

Burgering et al. (1997) JMB 269:395

Maximum likelihood superpositions

1ng7: poliovirus 3A, soluble domain

60aa, 10 NMR models

Least-squares

Maximum likelihood

Weighted Least-Squares

Correct for unequal variances by weighting by the inverse of the variance:

$$SS_w = \sum_{i}^{N} \|\mathbf{X}_i \mathbf{R}_i - \mathbf{M}\|_{\mathbf{\Sigma}^{-1}}^2$$
$$SS_w = \sum_{i}^{N} \operatorname{tr} \left([\mathbf{X}_i \mathbf{R}_i - \mathbf{M}]' \mathbf{\Sigma}^{-1} [\mathbf{X}_i \mathbf{R}_i - \mathbf{M}] \right)$$

Iteratively re-weighted least-squares algorithm:

- 1. Calculate weighted superposition with current variances
- 2. Calculate variances from current superposition
- 3. Loop until convergence

Hierarchical prior for the variances: Inverse gamma distribution

PDF:
$$p(\lambda_j | \alpha) = \frac{\alpha^{\frac{1}{2}}}{\Gamma(\frac{1}{2})} \lambda_j^{-\frac{3}{2}} e^{-\frac{\alpha}{\lambda_j}}$$

 λ_j = a variance for atom j

Empirical Bayesian solution (hierarchical)

Old, broken solution

$$\hat{\boldsymbol{\Sigma}}_U = \frac{1}{3N} \sum_{i}^{N} (\mathbf{\check{X}}_i \mathbf{R}_i - \mathbf{\hat{M}}) (\mathbf{\check{X}}_i \mathbf{R}_i - \mathbf{\hat{M}})'$$

"Shrunken" covariance matrix

$$\hat{\boldsymbol{\Sigma}}_{I\gamma} = \left(\frac{3N}{3N+3}\right) \left(\frac{2\alpha}{3N}\mathbf{I} + \hat{\boldsymbol{\Sigma}}_U\right)$$

$$\hat{\alpha} = \frac{K}{2\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\right)}$$

scale parameter of inverse gamma distribution

The difference is the covariance matrix

ML weights by the inverse covariance matrix, which downweights variable regions.

Assume the structures (matrices) have a Gaussian distribution

The usual scalar Gaussian (Bell curve) PDF:

$$p(x_i|\mu,\sigma) = (2\pi)^{-\frac{1}{2}}\sigma^{-\frac{1}{2}} \exp\left\{-\frac{1}{2\sigma}(x_i-\mu)^2\right\} \begin{array}{l} \mu = mean\\ \sigma = variance \end{array}$$

The matrix Gaussian PDF:

$$p(\mathbf{X}_i | \mathbf{M}, \mathbf{\Sigma}) = (2\pi)^{-\frac{KD}{2}} |\mathbf{\Sigma}|^{-\frac{D}{2}} \exp\left\{-\frac{1}{2} \|\mathbf{X}_i - \mathbf{M}\|_{\mathbf{\Sigma}^{-1}}^2\right\}$$

The Matrix Gaussian has a *covariance matrix* (Σ) instead of a single variance

Covariance matrix

Each atom has a variance *and* can co-vary with other atoms

Example covariance matrix for five atoms:

Variances are on the diagonal. Covariances are off diagonal elements.

PCA structure plots

- 1. Superimpose simulated structures
- 2. Do PCA on the covariance/correlation matrix
- 3. Plot PCs on structure

PDB ID: 2sdf SDF-1, 30 NMR models **Red regions are self-correlated**

Blue regions are self-correlated

Red and **Blue** are anti-correlated

Simulation test of the ML method: Generate random structures

Generated 300 random Gaussian structures, with known parameters:

- mean structure
- covariance matrix
- true superposition
- rotations
- translations

LS vs ML: Maximum likelihood recovers the true superposition accurately

Maximum likelihood

LS vs ML: Maximum likelihood recovers the true superposition accurately

LS vs ML: Maximum likelihood recovers the true superposition accurately

Maximum likelihood

Least-squares gives artifactual correlations

truncated

ML

0.5

-0.5

-0.5

50 60

40

D

60

50

40

30

20

10

Ô.

60

40

30

20

10

0

0

10 20

30 40 50 60

н

20 30

PCA for analyzing correlations in NMR families

Molecular dynamics

MD trajectory of ubiquitin with NMR constraints

Lindorff-Larsen et al. (2005) Nature 433:128

Posterior mode solution for inverse Wishart priors on the covariance matrix

MCMC chain results for nonisotropic variance hyper-parameter

50S large subunit of the Haloarcula ribosome

PC2 of ML superposition of 10 ribosome structures

Hansen et al. (2002) *Mol Cell.* 10:117.

Hansen et al. (2003) J Mol Biol. 330:1061

Three OB-fold telomeric domains

PCA of co-evolving structures

Loop conformations have co-evolved

Conditional distributions: The mean

Assume uniform improper prior on M

$$p(\mathbf{M}|\mathbf{X}, \boldsymbol{\Sigma}, \mathbf{R}, \boldsymbol{t}) = (2\pi)^{-\frac{3K}{2}} |\mathbf{\Omega}|^{-\frac{3}{2}} \exp\left(-\frac{1}{2} \operatorname{tr}\left\{[\mathbf{M} - \mathbf{B}]'\mathbf{\Omega}^{-1}[\mathbf{M} - \mathbf{B}]\right\}\right)$$
$$\mathbf{\Omega} = \frac{1}{N} \boldsymbol{\Sigma}$$
$$[\mathbf{\Sigma}_{iso} = \phi \mathbf{I}] \qquad \mathbf{\Omega} = \frac{\phi}{N} \mathbf{I}$$
$$\mathbf{B} = \frac{1}{N} \sum_{i}^{N} \mathbf{Y}_{i} \qquad \mathbf{Y}_{i} = (\mathbf{X}_{i} + \mathbf{1}_{K} \boldsymbol{t}_{i}') \mathbf{R}_{i}$$

A matrix normal distribution centered on the sample average (the ML estimate)

Least-squares produces artifactual PCs

Variance can range 10,000-fold

Iadz: Kunitz domain 2 of Tissue Factor Pathway Inhibitor 71 aa, 30 NMR models

Trim the "un-superimposable", disordered regions

Burgering et al. (1997) JMB 269:395

Hyperparameter for inverse Wishart covariance matrix: Gamma distribution

$$\lambda \sim G\left(\frac{2}{\operatorname{tr}\left(\mathbf{\Sigma}^{-1} + \frac{2}{\delta}\right)}, \frac{k^2 + 2p}{2}\right)$$

THESEUS: http://www.theseus3d.org

Brandeis University

Brandeis University Department of Biochemistry

University of Colorado at Boulder Department of Chemistry and Biochemistry Wuttke Lab

Theseus

An application for maximum likelihood superpositioning and analysis of macromolecular structures.

Description

Theseus is a program that simultaneously superimposes multiple macromolecular structures. Instead of using the conventional least-squares criteria, Theseus finds the optimal solution to the superposition problem using the method of maximum likelihood. By downweighting variable regions of the superposition and by correcting for correlations among atoms, the ML superpositioning method produces much more accurate results.

When superpositioning macromolecules with different residue sequences, other programs and algorithms discard residues that are aligned with gaps. **Theseus**, however, uses a novel maximum likelihood superposition algorithm that includes all of the data.

A conventional least-squares superposition of the Kunitz domain from PDB ID 2sdf is shown at left. A maximum likelihood superposition from **Theseus** is shown at center. At right is the first principal component of the superposition plotted on the family of models. The red loops at lower right are highly correlated with each other, whereas they are moderately anti-correlated with the light blue strands at left center.

Documentation
The Theseus man page as a PDF document.
Author
Douglas Theobald <dtheobald@brandeis.edu></dtheobald@brandeis.edu>
Citations
Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem.
Theobald, Douglas L. & Wuttke, Deborah S. (2006a) PNAS 103(49):18521-18527 (Open Access)
THESEUS: Maximum likelihood superpositioning and analysis of macromolecular structures. Theobald, Douglas L. & Wuttke, Deborah S. (2006b) Bioinformatics 22(17):2171-2172 [Open Access] Supplementary Materials for Theobald and Wuttke 2006b.
Accurate structural correlations from maximum likelihood superpositions. Theobald, Douglas L. & Wuttke, Deborah S. (2008) PLOS Computational Biology 4(2):e43 [Open Access]

Latest Version - 1.2.7 - [two important bug fixes since 1.0.0]

Downloads

UNIX source code. (1.5 Mb) Requires an ANSEC compiler (prefetably GNU GCC) to compile and working ATLAS BLAS, LAPACK, and GSL libraries.	Download
Macintosh OS X (Leopard/Tiger) Intel Xeon executable.	Download
Macintosh OS X (Leopard/Tiger) Intel Core Duo (MacBook Pro) executable.	Download
Macintosh OS X (Leopard/Tiger) G5 executable.	Download
Macintosh OS X (Leopard/Tiger) G3/G4 executable.	Download
linux genetic x86 executable.	Download
reeBSD i386 (Xeon) executable.	Download
Windows executable (two binaries, mingw and Visual C++).	Download

