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Spherical data

Directional data or spherical data are multivariate data for which we are interested
in their direction.

A spherical random variable X in Rk is a vector

X = (X1, · · · ,Xk)′, such that
k∑

i=1

X 2
i = 1.

A spherical random variable takes its values on the unit sphere

Sk−1 =
{
v ∈ Rk , v ′v = 1

}
, k ≥ 2.

Spherical data application for k = 2 and k = 3 (resp. circle in R2 and sphere in
R3) in e.g. meteorology, biology, neurosciences, oceanography.
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Quantiles and depth on spheres

Despite an extensive literature in recent years (see Kong and Mizera (2012) and
Hallin, Paindaveine and Siman (2010)) , no conclusive definition of quantiles in
multivariate and directional data has emerged.

Koenker (2005) : The search for a satisfactory notion of multivariate quantiles has
become something of a quest for the statistical holy grail in recent years ... It is
fair to say that no general agreement has emerged.

However a related to the quantiles notion is the depth. The notion of depth gives
an ordering for multivariate data w.r.t. a center point. One famous depth function
is the angular Tukey depth that can be summarized as follows

ATDf (θ) = inf
S:θ∈S

Pf (S),

where the infimum is taken over all closed hemispheres containing θ and P
denotes a distribution on Sk−1.
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Quantiles and depth on spheres

Unfortunately, depth functions suffers for some drawbacks

1 Computationally heavy

2 Hard to base inference as no asymptotic representations exists

3 Whatever f is considered, there always exists a hemisphere with constant
minimal depth
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Assumptions

Before defining our new concept of quantiles, we introduce two Assumptions on
the distributions we hereafter consider.

Assumption F
The distribution of X belongs to the class F of probability laws on Sk−1 with
bounded density and which admit a unique median direction θm.

Assumption R
The distribution of X belongs to the class R of rotationally symmetric
distributions on Sk−1 with bounded density and which admit a unique median
direction θm.
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New concept of quantiles on spheres

Consider X , a spherical random variable with density f in F and mode θm.
Let cτ (the projection quantile) be the τ -quantile of the univariate r.v. X ′θm and
define

C+
τ =

{
x ∈ Sk−1 / x ′θm ≥ cτ

}
,

C−τ =
{
x ∈ Sk−1 / x ′θm < cτ

}
.

Observe that ∫
C−τ

f (x)dx = τ,

formula that parallels ∫
y<qτ

fY (y)dy = τ,

where Y is some univariate random variable with density fY and τ -quantile qτ .
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Angular Mahanalobis Depth

Consider the depth function

Df (x) = arg min
τ∈[0,1]

{cτ ≥ x ′θm} ,

which fulfill the following requirements (see Zuo and Serfling (2000))

1 rotationally invariant

2 maximal at x = θm
3 decreasing along each great semi-circle form θm to −θm
4 Df (−θm) = 0

We then define the angular Mahanalobis depth (AMHDf ) as

AMHDf (x) =
Df (x)

1 + Df (x)
=

1

1 + 1
Df (x)

, x ∈ Sk−1.

The AMHDf satisfies the four properties aforementioned together with
AMHDf (θm) = 1/2 (as in the classical depth definitions).
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Empirical aspects

Let X1, · · · , Xn, be i.i.d. observations on Sk−1. Our estimators of the quantile
caps C+

τ and C−τ are respectively

Ĉ+
τ =

{
x ∈ Sk−1 / x ′θ̂m ≥ ĉτ

}
,

Ĉ−τ =
{
x ∈ Sk−1 / x ′θ̂m < ĉτ

}
.

where θ̂m is any root-n consistent estimator of θm and ĉτ is the empirical quantile
of the (non i.i.d.) sequence

X ′1θ̂m, · · · ,X ′nθ̂m.
More precisely let

ĉτ = arg min
c∈[−1,1]

n∑
i=1

`τ

(
X ′i θ̂m − c

)
the estimator of the projection quantile

cτ = arg min
c∈[−1,1]

E [`τ (X ′θm − c)]

where `τ (t) = t(τ − I(t ≤ 0)) is the classical quantile check function.
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Empirical Results

Let fproj(·) be the density of the univariate r.v. X ′θm

Proposition 1: Bahadur representation

Under Assumption F , there exists a k-vector Γθm,cτ such that

n1/2 (ĉτ − cτ ) =
n−1/2

fproj (cτ )

n∑
i=1

(
τ − I

[
X ′i θm ≤ cτ

])
−

Γ′θm,cτ
fproj (cτ )

n1/2
(
θ̂m − θm

)
+ oP(1)

as n→∞.

Proposition 2: Rotationally symmetric case

Under Assumption R

n1/2 (ĉτ − cτ ) =
n−1/2

fproj (cτ )

n∑
i=1

(
τ − I

[
X ′i θm ≤ cτ

])
+ oP(1)

as n→∞.
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sketch of proofs : Bahadur representation for non-smooth
objective functions (Proposition 1)

We want to estimate θ = arg mint E[m(X , t)] given a i.i.d. sample X1, . . . ,Xn.

Consider

Mn(t) =
∑n

i=1 m(Xi , t)

θ̂ = arg minMn (t)

The FOC M
(1)
n (θ̂) = 0

suppose that M
(2)
n does not exist. Instead µ (t) = E[M

(1)
n (t) /n] is

differentiable.
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Then

0 =
M

(1)
n

(
θ̂
)

√
n

=
M

(1)
n (θ)√
n

+
M

(1)
n

(
θ̂
)
−M

(1)
n (θ)

√
n

=
M

(1)
n (θ)√
n

+
√
n
(
µ
(
θ̂
)
− µ (θ)

)
+
M

(1)
n

(
θ̂
)
−M

(1)
n (θ)− n

(
µ
(
θ̂
)
− µ (θ)

)
√
n

.

In a preliminary step suppose that for some v ∈ (0, 1]

sup
∆

 1

|∆|ν

∣∣∣M(1)
n (θ + ∆)−M

(1)
n (θ)− n (µ (θ + ∆)− µ (θ))

∣∣∣
√
n

 = OP (1) .
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Then, it can be shown that θ̂ − θ = OP
(
n−1/2

)
, so that

0 =
M

(1)
n (θ)√
n

+
√
nµ(1) (θ)

(
θ̂ − θ

)
+ OP(n−1/2) + OP

((
θ̂ − θ

)ν)
.

This gives

√
n
(
θ̂ − θ

)
= − 1

µ(1) (θ)

M
(1)
n (θ)√
n

+ OP

(
n−ν/2 + n−1/2

)
︸ ︷︷ ︸

Bahadur term

.

For quantile estimation typically ν = 1/2 which gives a OP
(
n−1/4

)
Bahadur term.

This is done in the context of non-i.i.d. variables and where we use the Kreiss
approximation for discretized estimators in order to deal with the estimator θ̂m.
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sketch of proof of Proposition 2

Proof of Proposition 2 builds on two facts

1 θ̂m − θm = (Ik − θmθ′m)
(
θ̂m − θm

)
+ oP(n−1/2).

2 there exists a constant γθm,cτ such that Γθm,cτ = γθm,cτ θm (Watson’s (1983)
decomposition).
The combination of these two facts yields that

Γ′θm,cτ n
1/2
(
θ̂m − θm

)
= oP(1),

which is the desired result.
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Descriptive statistics

We give the values of the deciles cj/10, j = 1, . . . , 9 for some classical distributions
with different concentration parameter. This gives an alternative to the single

value of the resultant length R = (E[X ]′E[X ])
1/2

.

Density c1/10 c2/10 c3/10 c4/10 c5/10 c6/10 c7/10 c8/10 c9/10

fFvML(1) -.5059 -.1767 .0705 .2686 .4338 .5756 .6998 .8102 .9096
fFvML(2) -.0750 .2307 .4190 .5555 .6626 .7507 .8256 .8908 .9484
fFvML(5) .5396 .6782 .7593 .8168 .8614 .8979 .9287 .9554 .9790
fFvML(10) .7698 .8391 .8797 .9084 .9307 .9490 .9644 .9777 .9895
flin(2) -.6583 -.3875 -.1560 .0494 .2361 .4084 .5691 .7203 .8636
flin(5) -.7573 -.5278 -.3095 -.1010 .0991 .2916 .4773 .6569 .8310
flin(10) -.7804 -.5660 -.3563 -.1511 .0499 .2470 .4404 .6302 .8167
fPur(1) -.4373 -.1078 .1386 .3358 .4986 .6356 .7519 .8507 .9337
fPur(5) .7359 .8386 .8911 .9243 .9474 .9644 .9772 .9870 .9946
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QQ-Plots

QQ-plots (theoretical quantiles versus sample quantiles) using theoretical
FvML(2) quantiles in the plots. In each case, we generated a sample of 1000
observations from two distributions: FvML(2) and FvML(10).
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DD-Plots
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DD-Plots defined as in Liu et al. (1999). The left DD-Plots should look like a
homoskedastic white noise around the same 45-degree line while the right DD-Plots
should show a clear departure from the homoskedastic white noise situation.
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Goodness-of-fit test

Our quantiles are well-suited to Goodness-of-fit test. We want to test H0 : f = f0
against H1 : f 6= f0 for some rotationally symmetric f0. Proposition 2 yields that

T (n)
τ := n1/2

 ĉτ1 − c0
τ1

...
ĉτm − c0

τm

 D→ N (0,Σ)

with

Σi,j =
min(τi , τj)− τi , τj
fproj(cτi )fproj(cτj )

.

A Goodness-of-fit test can be based on the statistic

Q(n)
τ :=

(
T (n)
τ

)′
Σ−1T (n)

τ

which converges in distribution to a chi-square distribution with m degrees of
freedom.
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Analysis of a comic ray data

The data was first used in Toyoda et al. (1965) in order to study primary cosmic
rays in certain energy regions. The sample size is 148.
We will also apply our Goodness -of-fit test to that sample in order to say which
distribution described at best the data.
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Visual inspection

The zone in grey are the τ (equal to .5 and .75) empirical upper quantile caps.
The red point is the Fisher (1985) empirical median.
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QQ-Plot exploration

QQ-Plots of the quantiles of various FvML and Purkayastha distributions versus
the sample quantiles of the cosmic rays data.
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Formal goodness-of-fit tests

Density p-value Density p-value
fFvML(.3) .00135 fPur(.3) .00261
fFvML(.4) .00839 fPur(.4) .01316
fFvML(.5) .02780 fPur(.5) .02897
fFvML(.6) .05274 fPur(.6) .02905
fFvML(.7) .06001 fPur(.7) .01295
fFvML(.8) .04163 fPur(.8) .00236
fFvML(.9) .01737 fPur(.9) .00015
fFvML(1) .00422 fPur(1) .00001

Table : p-values, for the cosmic rays data, of the goodness-of-fit tests based on the
quartiles (ĉ.25, ĉ.5, ĉ.75)′ for various FvML and Purkayastha distributions.

As a conclusion, the FvML distribution with concentration κ = 0.7 (or 0.6)
provides a reasonable fit to this data set, and we can moreover well describe the
data in terms of quantile values.
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Thanks for your attention!
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