Bootstrap Goodness-of-fit Testing for Wehrly–Johnson Bivariate Circular Models

Arthur Pewsey

apewsey@unex.es

Mathematics Department University of Extremadura, Cáceres, Spain

ADISTA14 (BRUSSELS, BELGIUM), 21ST MAY 2014

Consejería de Empleo, Empresa e Innovación

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

2 Tests for toroidal uniformity

Bootstrap goodness-of-fit testing

Goodness-of-fit testing

Simulation results

The Wehrly–Johnson class of distributions

Definition

A bivariate circular random vector (Θ_1, Θ_2) follows a Wehrly–Johnson (Wehrly & Johnson, 1980) distribution if it has density

$$f(\theta_1, \theta_2) = 2\pi f_1(\theta_1) f_2(\theta_2) g(2\pi \{F_2(\theta_2) - qF_1(\theta_1)\}),$$
(1)

where f_1 and f_2 are the marginal densities of Θ_1 and Θ_2 , F_1 and F_2 their distribution functions, $q \in \{-1, 1\}$, and g is some other circular density which we will refer to as the binding density.

Goodness-of-fit testing

Simulation results

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

2-fold symmetric cases of density (1)

$$f(\theta_1, \theta_2) = 2\pi f_1(\theta_1) f_2(\theta_2) g(2\pi \{F_2(\theta_2) - qF_1(\theta_1)\})$$
(1)

As in Jones, Pewsey & Kato (2013), we consider cases of (1) that are 2-fold (rotationally) symmetric about (μ_1, μ_2) where μ_p is the mean (and modal) direction of a (reflectively) symmetric unimodal (marginal) distribution with distribution function F_p : p = 1, 2. These are obtained if we:

$$\mathcal{F}_{oldsymbol{
ho}}(heta) = \int_{\mu_{oldsymbol{
ho}}}^{ heta} f_{oldsymbol{
ho}}(\phi) d\phi,$$

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Plots of BwC and BvM densities

Figure 1 : Contour plots of BwC(1, π , 0.1, π , 0.9, 0, ρ_g) and BvM(1, π , $A^{-1}(0.1)$, π , $A^{-1}(0.9)$, 0, $A^{-1}(\rho_g)$) densities with, from left to right, $\rho_g = 0.1, 0.5, 0.9$. The red crosses identify ($\mu_1 = \mu_2 = \pi$).

Wehrly-Johnson	class
0000	

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Key property

$$f(\theta_1, \theta_2) = 2\pi f_1(\theta_1) f_2(\theta_2) g(2\pi \{F_2(\theta_2) - qF_1(\theta_1)\})$$
(1)

Consider the joint distribution of (Θ_1, Ω) , where

$$\Omega = 2\pi \{F_2(\Theta_2) - qF_1(\Theta_1)\}.$$

It is simple to show that

$$f(\theta_1,\omega)=f_1(\theta_1)\,g(\omega),$$

i.e. Θ_1 and Ω are independent.

Consequently, $(2\pi F_1(\Theta_1), 2\pi G(\Omega))$, where *G* is the distribution function associated with *g*, is uniformly distributed on the torus.

Goodness-of-fit testing

Simulation results

Wellner tests for toroidal uniformity

Wellner (1979) proposed toroidal equivalents of the Rayleigh and Bingham tests for uniformity:

Rayleigh-type test $T_R = 2n^{-1}|R|^2$, where $|R|^2 = \sum_{p=1}^2 a_p^2 + b_p^2$, with $a_p = \sum_{j=1}^n \cos \theta_{pj}$ and $b_p = \sum_{j=1}^n \sin \theta_{pj}$, p = 1, 2.

Bingham-type test $T_B = 4n^{-1}\{(aa)^2 + (ab)^2 + (ba)^2 + (bb)^2\},\$ where $aa = \sum_{j=1}^n \cos \theta_{1j} \cos \theta_{2j},\$ $ab = \sum_{j=1}^n \cos \theta_{1j} \sin \theta_{2j},\ ba = \sum_{j=1}^n \sin \theta_{1j} \cos \theta_{2j}$ and $bb = \sum_{j=1}^n \sin \theta_{1j} \sin \theta_{2j}.$

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Wellner and Jupp tests for toroidal uniformity

Wellner's Rayleigh-type and Bingham-type tests are not consistent against all alternatives (as they are Sobolev tests with just one non-zero constant in each of their definitions).

As a remedy to this problem, Jupp (2009) proposed a so-called data-driven Sobolev test that is consistent against all alternatives; with the non-zero constants determined from the data.

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Jupp's data-driven test for toroidal uniformity

Jupp's test $T_{\tilde{m}}$, where

$$T_m = \frac{1}{n} \sum_{k=1}^n \sum_{j=1}^n \left\{ \prod_{p=1}^2 h_m(\theta_{pj}, \theta_{pk}) \right\} - n,$$

$$h_m(\phi, \psi) = \left\{ \begin{array}{ll} \frac{\sin((m+1/2)(\phi-\psi))}{\sin((\phi-\psi)/2)}, & \text{if } \phi \neq \psi, \\ 2m+1, & \text{if } \phi = \psi, \end{array} \right.$$

and \tilde{m} is chosen such that

$$ilde{m} = \inf \left\{ m^* \in \mathbb{N} : PS(m^*) = \sup_{1 \le m \le L(n)} PS(m) \right\},$$

where

$$PS(m) = T_m - ((2m+1)^2 - 1)\log(n)$$

is a penalized score statistic and *L* is some suitable function of *n*.

Goodness-of-fit testing

Simulation results

Testing for toroidal uniformity and goodness-of-fit

Under toroidal uniformity, the sampling distributions of T_R and T_B are both asymptotically χ^2_4 , while that of $T_{\tilde{m}}$ is asymptotically χ^2_8 .

When testing goodness-of-fit, rather than applying the tests to $(2\pi F_1(\theta_1), 2\pi G(\omega))$ -values calculated for known parameter values, we must estimate the parameters of the chosen Wehrly–Johnson model. When applied to values of $(2\pi \hat{F}_1(\theta_1), 2\pi \hat{G}(\hat{\omega}))$, the sampling distributions of T_R , T_B and $T_{\tilde{m}}$ are no longer as specified above and even for relatively large sample sizes can differ substantially from their asymptotic χ^2 distributions under toroidal uniformity.

The obvious computer-intensive strategy to adopt is one incorporating parametric bootstrap simulation.

Toroidal uniformity tests

Goodness-of-fit testing ●○ Simulation results

General bootstrap goodness-of-fit approach

- Compute MLEs, values of $\hat{\omega}_j = 2\pi \{\hat{F}_2(\theta_{2,j}) q\hat{F}_1(\theta_{1,j})\}\$ and $(2\pi \hat{F}_1(\theta_{1,j}), 2\pi \hat{G}(\hat{\omega}_j)), j = 1, ..., n$, and the test statistic value for a test for toroidal uniformity, \mathcal{T}_0 .
- Simulate B bootstrap samples from the distribution fitted to the original data in the previous step.
- So For the *b*th (b = 1, ..., B) bootstrap sample, compute MLEs, values of $\tilde{\omega}_j$ and $(2\pi \tilde{F}_1(\theta_{1,j}), 2\pi \tilde{G}(\tilde{\omega}_j)), j = 1, ..., n,$ and test statistic value of test for toroidal uniformity, \mathcal{T}_b .
- The *p*-value of the test is the proportion of the (B+1) \mathcal{T} -values that are at least as extreme as \mathcal{T}_0 .

 $\eta_{D} \in$

Goodness-of-fit testing 0.

Simulation results

Transformation to toroidal uniformity for BwC case

As Kato & Pewsey (2013) show, if $(\Theta_1, \Theta_2) \sim$ BwC($q, \mu_1, \rho_1, \mu_2, \rho_2, 0, \rho_a$) then

 $(\operatorname{Arg}(C_1), \operatorname{Arg}(C_2)) \pmod{2\pi}$

is uniformly distributed on the torus, where

$$C_{1} = \frac{(\eta_{1}\rho_{1} - Z_{1})}{(\rho_{1}Z_{1} - \eta_{1})}, \quad C_{2} = \frac{(\alpha\beta - Z_{2})}{(\overline{\beta}Z_{2} - \alpha)},$$

$$\alpha = \frac{\eta_{2}(\rho_{2}\rho_{g}C_{1}^{-q} + 1)}{(\rho_{2}\rho_{g}C_{1}^{-q} + 1)}, \quad \beta = \frac{(\rho_{2} + \rho_{g}C_{1}^{q})}{(\rho_{2}\rho_{g}C_{1}^{-q} + 1)},$$

$$Z_{\rho} = e^{i\Theta_{\rho}}, \quad \rho = 1, 2,$$

$$\eta_{\rho} \in \{z \in \mathbb{C} ; |z| = 1\}, \text{ with } \operatorname{Arg}(\eta_{\rho}) \pmod{2\pi} = \mu_{\rho}, \quad \rho = 1, 2,$$
and \overline{z} denotes the complex conjugate of z .

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Size of goodness-of-fit tests for BwC model

Figure 2 : Estimated size of the Rayleigh-type, Bingham-type and Jupp based goodness-of-fit tests as a function of ρ_g and a nominal significance level of 5%. Rows (columns) are: first, $\rho_1(\rho_2) = 0.1$; second, $\rho_1(\rho_2) = 0.5$; third, $\rho_1(\rho_2) = 0.9$. Each size value was estimated using 500 samples of size 20 (**A**) or 50 (**•**) simulated from the BwC(1, π , ρ_1 , π , ρ_2 , 0, ρ_g) distribution and B = 199 parametric bootstrap samples simulated from the ML fitted BwC model.

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

Power against BvM model for assumed BwC

Figure 3 : Estimated power of the Rayleigh-type, Bingham-type and Jupp based goodness-of-fit tests as a function of sample size, *n*, and a nominal significance level of 5%. Left, $\rho_g = 0.1$; centre, $\rho_g = 0.5$; right, $\rho_g = 0.9$. Each power value was estimated using 500 samples of size *n* simulated from the BvM(1, π , $A^{-1}(0.1)$, π , $A^{-1}(0.9)$, 0, $A^{-1}(\rho_g)$) distribution and B = 199 parametric bootstrap samples simulated from the ML fitted BwC model.

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

BwC data, assumed underlying BwC model

 $\rho_g = 0.1$ (left), $\rho_g = 0.5$ (centre), $\rho_g = 0.9$ (right). Bottom row: Corresponding (Arg(C_1), Arg(C_2))-values after fitting a BwC model using maximum likelihood.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()~

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

BvM data, assumed underlying BwC model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

Toroidal uniformity tests

Goodness-of-fit testing

Simulation results

References

- Jones, M.C., Pewsey, A., Kato, S. (2013). On a class of circulas: copulas for circular distributions. To appear.
- Jupp, P.E. (2009). Data–driven tests of uniformity on product manifolds. *Journal of Statistical Planning and Inference*, *139*, 3820–3829.
- Kato, S., Pewsey, A. (2013). A Möbius transformation-induced distribution on the torus. To appear.
- Wehrly, T., Johnson, R.A. (1980). Bivariate models for dependence of angular observations and a related Markov process. *Biometrika*, *66*, 255–256.
- Wellner, J.A. (1979). Permutation tests for directional data. *Annals of Statistics*, 7, 929–943.