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Motivation

We consider high-dimensional directional data, that is, with data that live on

Sp−1 =
{

x ∈ Rp : ‖x‖ =
√

x ′x = 1
}
, p large.

Why?

(i) Because many applications involve such data.

• text analysis: the data may consist of n texts, containing altogether p different
words. The observations are then of the form

xi =


xi1

...
xip

 , i = 1, . . . , n,

where xij is the frequency of the j th word in the i th text. When performing, e.g.,
clustering, one often replaces xi with xi/‖xi‖ so that text length does not play
a role; see, among others, Dhillon and Modha (2001), Banerjee et al. (2003).
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Motivation

• Dryden (2005) considers an application in brain shape modelling.

Here, observations are of the form

xi =


xi1

...
xip

 , i = 1, . . . , n,

where xij is the distance between
the central landmark and the ex-
tremity of brain i in direction j .

- p = 62,501!

- One is interested in shape, and not in size⇒ one considers xi/‖xi‖



Motivation

(ii) Because, in the HD setup, data sometimes automatically become of a
directional nature

Consider X ∼ N (0, 1
p Ip).

Then ‖√p X‖2 ∼ χ2
p, hence has mean p and variance 2p.

Therefore, ‖X‖2 has mean 1 and variance 2/p, so that, as p →∞,

E[(‖X‖2 − 1)2] = Var[‖X‖2]→ 0.

We conclude that X "eventually belongs" to Sp−1.

Remarks:
- This is in line with the fact that E[U] = 0 and Var[U] = 1

p Ip for U ∼ Unif(Sp−1)

- This naturally brings sign tests in the picture...
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Two low-dimensional tests

Let X1, . . . ,Xn be i.i.d. with values in Sp−1.
We consider the problem of testing for uniformity on Sp−1.

The celebrated Rayleigh test rejects the null at asymptotic level α if

Tn = np‖X̄‖2 =

(
1√
n

n∑
i=1

Xi

)′( 1
p

Ip
)−1

(
1√
n

n∑
i=1

Xi

)
> χ2

p,1−α,

where χ2
d,1−α denotes the (1− α)- quantile of the χ2

d distribution.

In a non-directional framework, this test would be considered as a location
test, rejecting the null H0 : E[X ] = 0 for large values of X̄ (this test is valid
under sphericity assumptions).



Two low-dimensional tests

→ Increasingly severe alternatives→
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Two low-dimensional tests

Still for the problem of testing uniformity on Sp−1, an alternative test is the
Hallin and Paindaveine (2006) test, that rejects the null if

Tn =
p(p + 2)

2n

n∑
i,j=1

(
(X ′i Xj )

2 − 1
p

)
> χ2

d(p),1−α

=
np(p + 2)

2

∥∥∥∥ S
tr[S]

− 1
p

Ip

∥∥∥∥2 (
with S =

1
n

n∑
i=1

(Xi − 0)(Xi − 0)′
)
,

with ‖A‖2 = tr[AA′] and d(p) = p(p+1)
2 − 1.
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Two low-dimensional tests

Both tests, and many more from multivariate analysis, rely on a null (fixed-p)
asymptotic result of the form

Tn
L−−−→

n→∞
χ2

d(p),

hence lead to rejection (at asymptotic level α) whenever

Tn > χ2
d(p),1−α.

Of course, practical implementation of such tests requires n >> p.

Such tests therefore are not valid in the HD setup.

(Yet, their fixed-p optimality motivates studying their HD properties...)



The HD case

What would you expect in the HD setup where both n, p →∞?

Some heuristics...

Assume that d(p)→∞ as p →∞.
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The HD case

What would you expect in the HD setup where both n, p →∞?

Some heuristics... Assume that d(p)→∞ as p →∞.

Since
χ2

d − d√
2d

=
χ2

d − E[χ2
d ]√

Var[χ2
d ]
−−−→
d→∞

N (0, 1),

one may then expect that the fixed-p asymptotic result

Tn
L−−−→

n→∞
χ2

d(p)

will lead to a double-asymptotic result of the form

T St
n =

Tn − d(p)√
2d(p)

L−−−−−→
n,p→∞

N (0, 1).

Intuitively, this should hold if p = pn is going to∞ sufficiently slowly.



The HD case

Natural questions are :

Is this heuristics valid? That is, is there a (p = pn)→∞ such that

T St
n =

Tn − d(p)√
2d(p)

L−−−−−→
n,p→∞

N (0, 1) ?

How fast may pn go to infinity?

"For (pn) such that the above convergence holds", which test should be
favored for fixed (n, p)?

Test 1: reject at asymptotic level α if
Tn − d(p)√

2d(p)
> Φ−1(1− α).

Test 2: reject at asymptotic level α if

Tn > χ2
d(p),1−α, or equivalently, if

Tn − d(p)√
2d(p)

>
χ2

d(p),1−α − d(p)√
2d(p)

·



The HD case

To fix ideas, we restrict to Rayleigh’s test, with test statistic

Tn = npn‖X̄‖2 =
pn

n

n∑
i,j=1

X ′niXnj ,

which can be rewritten as

Tn = pn +
2pn

n

n∑
1≤i<j≤n

X ′niXnj ,

so that (recall d(p) = p for Rayleigh’s test)

T St
n =

Tn − d(pn)√
2d(pn)

=
Tn − pn√

2pn
=

√
2pn

n

n∑
1≤i<j≤n

X ′niXnj .

This is a U-statistic with an order-2 kernel that depends on p = pn.



The HD case

To study the asymptotic behavior of this U-statistic

T St
n =

√
2pn

n

n∑
1≤i<j≤n

X ′niXnj ,

the key move is to decompose T St
n into

T St
n =

n∑
`=1

Dn`,

where the random variables

Dn` = En`
[
T St

n
]
− En,`−1

[
T St

n
]

` = 1, . . . , n

=

√
2pn

n

`−1∑
i=1

X ′niXn`

form a martingale difference process; here, En`[ · ] denotes expectation with
respect to σ(X1, . . . ,X`).



The HD case

We can then rely on a CLT for martingale differences, such as the following.

Theorem (Billingsley (1995), Theorem 35.12)

Let Dn`, ` = 1, . . . , n, n = 1, 2, . . . , be a triangular array of random variables
such that, for any n, Dn1,Dn2, . . . ,Dnn is a martingale difference sequence
with respect to some filtration Fn1,Fn2, . . . ,Fnn (with Fn0 := {∅,Ω}). Assume
that E[D2

n`] <∞ for any n, ` ,and that

n∑
`=1

E
[
D2

n` | Fn,`−1
] P−−−→

n→∞
1 (1)

(where P→ denotes convergence in probability), and

n∑
`=1

E
[
D2

n` I[|Dn`| > ε]
]
−−−→
n→∞

0. (2)

Then
∑n
`=1 Dn` is asymptotically standard normal.



The HD case

After some work to establish (1)-(2), in the present context, we then obtain

Theorem 1

Let pn be a sequence of positive integers converging to +∞. Assume
that Xni , i = 1, . . . , n, n = 1, 2, . . . , is a triangular array such that for any n,
the random pn-vectors Xni , i = 1, . . . , n are i.i.d. uniform on Spn−1. Then

T St
n =

Tn − pn√
2pn

=

√
2pn

n

∑
1≤i<j≤n

X ′niXnj
L−−−→

n→∞
N (0, 1).

What is interesting is what is not there, namely a restriction on how fast pn

should go to infinity with n.

In other words, the result holds as soon as min(n, p)→∞
( "universal asymptotics")

This extends to the second test considered
(and actually to various sign tests from multivariate analysis).
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The HD case

To the best of our knowledge, this is the first universal (n, p)-asymptotic
result. Typically, in previous works,

one restricts the way p may go to infinity with n. It is standard to have

pn

n
→ c ∈ C

for some convex C ⊂ (0,∞) (e.g., C = (0, 1), [1,∞), etc.)

or

no such restrictions are imposed, but...
different (n, p)-regimes lead to different asymptotic distributions;
see, e.g., Cai and Jiang (2012), Cai, Fan, and Jiang (2013).









The HD case

Our universal asymptotic results validate the use of two different
(asymptotically equivalent) tests, namely

Test 1: reject at asymptotic level α if

T St
n =

Tn − d(p)√
2d(p)

> Φ−1(1− α).

Test 2: reject at asymptotic level α if Tn > χ2
d(p),1−α, or equivalently, if

T St
n =

Tn − d(p)√
2d(p)

>
χ2

d(p),1−α − d(p)√
2d(p)

·

What test should be favored for fixed (n, p)?
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Another problem

Ley, Swan, Thiam, and Verdebout (2013) discussed R-estimation in the
spherical location problem, that is in the problem of estimating θ from a
random sample X1, . . . ,Xn with common rotationally symmetric density

x 7→ cp,f f (x ′θ),

on Sp−1; see Saw (1978).

Paindaveine and Verdebout (2014) recently proposed signed-rank tests for
H0 : θ = θ0, including a sign test that rejects the null whenever

Tn =
p − 1

n

n∑
i,j=1

U ′i (θ0)Uj (θ0) > χ2
p−1,1−α,

where
Ui (θ0) =

(Ip − θ0θ
′
0)Xi

‖(Ip − θ0θ′0)Xi‖
, i = 1, . . . , n

is the "sign" of the projection of Xi onto the tangent space to Sp−1 at θ0.



The HD case

Mutatis mutandis, one can establish

Theorem 2

Let pn be a sequence of positive integers converging to +∞. Assume
that Xni , i = 1, . . . , n, n = 1, 2, . . . , is a triangular array such that for any n,
the random pn-vectors Xni , i = 1, . . . , n are i.i.d. rotationally symmetric about
θ0 ∈ Spn−1 (with Xn1 6= θ0 a.s.) Then

T St
n =

Tn − (pn − 1)√
2(pn − 1)

L−−−→
n→∞

N (0, 1).



Another problem

For the more classical Watson (1983) test, that rejects the null whenever

Wn =
n(p − 1)X̄ ′(Ik − θ0θ

′
0)X̄

1− 1
n

∑n
i=1(X ′i θ0)2

> χ2
p−1,1−α,

we can prove the following (where we let uni =
√

1− (X ′niθ0)2).

Theorem 3

Let Xni , i = 1, . . . , n, n = 1, 2, . . . , form a triangular array of random vectors
satisfying the following conditions : (i) for any n, Xn1,Xn2, . . . ,Xnn are mutually
independent and share a common rotationally symmetric distribution
on Spn−1 with location θ0; (ii) pn →∞ as n→∞; (iii) E[u2

n1] > 0 for any n;
(iv) E[u4

n1]/(E[u2
n1])2 = o(n) as n→∞. Then

W St
n =

Wn − (pn − 1)√
2(pn − 1)

L−−−→
n→∞

N (0, 1).

See Ley, Paindaveine and Verdebout (2014).
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Another problem

No universal consistency

Still...

• Imposing (iii) only excludes the degenerate case for which Xn1 = θ0 a.s.,
which would imply that Wn — hence also W St

n — is not well-defined.

• If (iv) does not hold, we must then have that, for some constant C > 0,

E[(X ′n1θ0)2] ≥ 1− C√
n

for infinitely many n. In the high-dimensional setup considered, this is
extremely pathological, since it corresponds to the distribution of Xn1

concentrating in one particular direction — namely, the direction θ0 — in the
expanding Euclidean space Rpn .



References

Banerjee, A., Dhillon, I., Ghosh, J., and Sra, S. (2003). Generative model-based clustering of directional data.
Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 19–28.

Cai, T., Fan, J., and Jiang, T. (2013). Distributions of angles in random packing on spheres. Journal of Machine
Learning Research 14, 1801–1828.

Cai, T., and Jiang, T. (2012). Phase transition in limiting distributions of coherence of high-dimensional random
matrices. Journal of Multivariate Analysis 107, 24–39.

Dhillon, I., and Modha, D. (2001). Concept decompositions for large sparse text data using clustering. Machine
Learning 42, 143–175.

Dryden, I. (2005). Statistical analysis on high-dimenional spheres and shape spaces. Annals of Statistics 33,
1643–1665.

Hallin, M., and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. I. Optimal
rank-based tests for sphericity. Annals of Statistics 34, 2707–2756.

Ley, C., Paindaveine, D., and Verdebout, T. (2014). High-dimensional tests for spherical location and spiked
covariance. Submitted.

Ley, C., Swan, Y., Thiam, B., and Verdebout, T. (2013), Optimal R-estimation of a spherical location. Statistica Sinica
23, 305–333.

Paindaveine, D., and Verdebout, T. (2014). Optimal rank-based tests for the location parameter of a rotationally
symmetric distribution on the hypersphere (with Th. Verdebout). In M. Hallin, D. Mason, D. Pfeifer, and J. Steinebach
Eds, Mathematical Statistics and Limit Theorems: Festschrift in Honor of Paul Deheuvels. Springer, to appear.

Paindaveine, D., and Verdebout, T. (2014). High-dimensional sign tests: from universal asymptotic theory to
practice. Submitted.

Papers with P. are downloadable from http://homepages.ulb.ac.be/ ˜dpaindav


	Motivation
	Two low-dimensional tests
	The HD case
	Another problem

