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Motivation

We consider high-dimensional directional data, that is, with data that live on
Spq:{XGIRP:HXH:\/X’X:1}7 p large.

Why?

(i) Because many applications involve such data.

o text analysis: the data may consist of n texts, containing altogether p different
words. The observations are then of the form

X = : , i=1,...,n,

where x; is the frequency of the jth word in the ith text. When performing, e.g.,
clustering, one often replaces x; with x;/||xi|| so that text length does not play
arole; see, among others, Dhillon and Modha (2001), Banerjee et al. (2003).



Motivation

e Dryden (2005) considers an application in brain shape modelling.

Here, observations are of the form

where x; is the distance between
the central landmark and the ex-
tremity of brain i in direction j.

- p=62,501!
- One is interested in shape, and not in size = one considers x;/|| x|



Motivation

(i) Because, in the HD setup, data sometimes automatically become of a
directional nature

Consider X ~ N(0, 1 ).
Then ||/p X||* ~ x5, hence has mean p and variance 2p.
Therefore, || X||? has mean 1 and variance 2/p, so that, as p — o,

E[(|X[[* — 1)°] = Var[| X][*] — 0.

We conclude that X "eventually belongs” to S~ .
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Motivation

(i) Because, in the HD setup, data sometimes automatically become of a
directional nature

Consider X ~ N(0, 1 ).
Then ||/p X||* ~ x5, hence has mean p and variance 2p.
Therefore, || X||? has mean 1 and variance 2/p, so that, as p — o,

E[(|X[[* — 1)°] = Var{| X|*] — 0.

We conclude that X "eventually belongs” to S~ .

Remarks:
- This is in line with the fact that E[U] = 0 and Var[U] = %Ip for U ~ Unif(SP~1)
- This naturally brings sign tests in the picture...



Two low-dimensional tests

Let Xi, ..., Xn be i.i.d. with values in SP~".
We consider the problem of testing for uniformity on SP~".

The celebrated Rayleigh test rejects the null at asymptotic level « if

< 1 < N1
=Xt = (0% (5h) 7 (R 20%) > e

where xfm,a denotes the (1 — a)- quantile of the X2 distribution.

In a non-directional framework, this test would be considered as a location
test, rejecting the null H, : E[X] = 0 for large values of X (this test is valid
under sphericity assumptions).



Two low-dimensional tests

— Increasingly severe alternatives —
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Two low-dimensional tests

Still for the problem of testing uniformity on SP~", an alternative test is the
Hallin and Paindaveine (2006) test, that rejects the null if

ij=1
_ np(p+2)|| S 1,17 . 1 - : : /
5 ﬁ_ﬁlp (w1thS_n;(X,—0)(X,—0)),

with ||A||2 = tr[AA] and d(p) = A& _ 1,
2



Two low-dimensional tests

— Increasingly severe alternatives —
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— Increasingly severe alternatives —
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Two low-dimensional tests

— Increasingly severe alternatives —
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Two low-dimensional tests

Both tests, and many more from multivariate analysis, rely on a null (fixed-p)
asymptotic result of the form

c 2
Tn 2 Xoto)
hence lead to rejection (at asymptotic level o) whenever

Th > Xi(p),pa-

Of course, practical implementation of such tests requires n >> p.

Such tests therefore are not valid in the HD setup.

(Yet, their fixed-p optimality motivates studying their HD properties...)



What would you expect in the HD setup where both n, p — c0?

Some heuristics...



The HD case

What would you expect in the HD setup where both n, p — c0?

Some heuristics... Assume that d(p) — oo as p — oo.

o Ok for Rayleigh, d(p) = p

e Ok for Hallin and Paindaveine (2006), d(p) = @ -1
e Ok for...



The HD case

What would you expect in the HD setup where both n, p — c0?

Some heuristics... Assume that d(p) — oo as p — oo.

Since ) ) )
Xd — d _ Xd — E[Xd] N(O 1)
\/@ Var[X?j] d—oo ’

one may then expect that the fixed-p asymptotic result
c 2
Tn o X
will lead to a double-asymptotic result of the form

7ot = Tn—db) £, w0, 1).
2d(p) n,p— oo

Intuitively, this should hold if p = p, is going to co sufficiently slowly.



The HD case

Natural questions are :

@ Is this heuristics valid? That is, is there a (p = ps) — oo such that

o= I _90) £, vio,1)?

\/m n,p—oco

@ How fast may p, go to infinity?

@ "For (pn) such that the above convergence holds", which test should be
favored for fixed (n, p)?

Test 1: reject at asymptotic level « if Tn—d(p) > o7 '(1 - a).
2d(p)

Test 2: reject at asymptotic level « if

Th > xi(p),1_a, or equivalently, if



The HD case

To fix ideas, we restrict to Rayleigh’s test, with test statistic

To = npa| X|? = 22 Z Xy Xej,

ij=1
which can be rewritten as

2 n
Th=pn+ ﬂ Z Xn/ana

1<i<j<n

so that (recall d(p) = p for Rayleigh’s test)

() N e A L S
Vv 2d(pn) V 2,017 n 1<i<j<n

This is a U-statistic with an order-2 kernel that depends on p = p,.



The HD case

To study the asymptotic behavior of this U-statistic

n
T = VIS XXy,

1<i<j<n

the key move is to decompose T3' into

n

St

Tn = E Dnév
=1

where the random variables

Dn = Ene[TSI]—En,eq[Tgt] £=1,...,n

2pn Z Xl,u Xné

form a martingale difference process; here, Epn[ -] denotes expectation with
respect to o (Xi, ..., Xe).



The HD case

We can then rely on a CLT for martingale differences, such as the following.

Theorem (Billingsley (1995), Theorem 35.12)

LetDpe, ¢ =1,....,n,n=1,2,..., be a triangular array of random variables
such that, for any n, Dpi, Do, . . ., Dny is @ martingale difference sequence
with respect to some filtration Fp1, Frz, - . . , Fon (With Frno := {0,Q}). Assume
that E[D?,] < oo for any n, ¢ ,and that

n
ZE[Dﬁe | Fre—1] ﬁ 1 (1)
=1

(where L denotes convergence in probability), and

> E[D3I[|Dne| > €]] ——0. )

=1

Then >"}_, Dy is asymptotically standard normal.




The HD case

After some work to establish (1)-(2), in the present context, we then obtain

Theorem 1

Let p, be a sequence of positive integers converging to +oco. Assume
that Xni, i=1,...,n,n=1,2,..., is a triangular array such that for any n,
the random p,-vectors X,;, i = 1,...,n are i.i.d. uniform on SP"~'. Then

TS = To—=pPn _ V/2Pn Z X, Xy —£ 5 N(O0,1).
V/2Pn N <S<n oo

What is interesting is what is not there, namely a restriction on how fast p,
should go to infinity with n.

In other words, the result holds as soon as min(n, p) — oo
(~ "universal asymptotics")

This extends to the second test considered
(and actually to various sign tests from multivariate analysis).
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The HD case

To the best of our knowledge, this is the first universal (n, p)-asymptotic
result. Typically, in previous works,

@ one restricts the way p may go to infinity with n. It is standard to have
P eC

n

for some convex C C (0, ) (e.g., C = (0,1), [1,00), etc.)

or

@ no such restrictions are imposed, but...
different (n, p)-regimes lead to different asymptotic distributions;
see, e.g., Cai and Jiang (2012), Cai, Fan, and Jiang (2013).



Theorem 6 (Extreme Law: Sub-Exponential Case) Let p = p, — 0o satisfy 13? —
0 asn — oo. Then

(1). maxj<icj<n |04 — 5| = 0 in probability as n — oo;

(ii). As n — oo, 2plogsin Oy + 4logn — loglogn converges weakly to the extreme value
distribution with the distribution function F(y) = 1 — eKe? 4y e Rand K =
1/(4v/2m). The conclusion still holds if Omin is replaced by Omax.

Theorem 8 (Extreme Law: Exponential Case) Let p = p, satisfy l‘JJ;ﬂ — B €(0,00)
as n — oo, then

(i). Omin = cos™ V1 —e=48 and Opax — ™ — cos~ 1 V1 — e=4P in probability as n — oo;

(ii). Asn — 00, 2plogsin Omin + 4logn — loglogn converges weakly to a distribution with
the distribution function
— 1— exp {—K(B)ev+88)/2 B\
F(y)=1 exp{ K(B)e } y € R, where K(8) = (8#(176*4*3)) s

and the conclusion still holds if © iy, is replaced by © pax.

Theorem 9 (Extreme Law: Super-Exponential Case) Let p = p,, satisfy l”% — 00
asn — 0o. Then,

(i). Omin = 0 and Oax — ™ in probability as n — oo;

(ii). As n — oo, 2plogsin Omin +5 ~Prlogn — logp converges weakly to the extreme value
distribution with the dzstmbutzon function F(y) = 1 — e X¢? 4y € R with K =
1/(2v2r). The conclusion still holds if Omin is replaced by Omax.
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The HD case

Our universal asymptotic results validate the use of two different
(asymptotically equivalent) tests, namely

@ Test 1: reject at asymptotic level « if
TS = Tn — d(p) > o1 —a).
2d(p)
@ Test 2: reject at asymptotic level « if T, > Xf,(pm,a, or equivalently, if
T, —d(p) _ Xap),1—a — 9d(P)

2d(p) 2d(p)

What test should be favored for fixed (n, p)?

St
T, =
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Another problem

Ley, Swan, Thiam, and Verdebout (2013) discussed R-estimation in the
spherical location problem, that is in the problem of estimating 6 from a
random sample Xi, ..., X, with common rotationally symmetric density

X = Cprf(X'0),

on SP~'; see Saw (1978).

Paindaveine and Verdebout (2014) recently proposed signed-rank tests for
Ho : 0 = 6y, including a sign test that rejects the null whenever

1<
To=P—2 > Ui(Bo)U0) > xhr.1-o
ij=
where ,
_ (b= 00bo0)X;

Ui(0g) = —F————,
(%) = 10— G0t X]

=1,...,n

is the "sign" of the projection of X; onto the tangent space to SP~" at 6.



The HD case

Mutatis mutandis, one can establish

Theorem 2

Let p, be a sequence of positive integers converging to +oco. Assume

that Xni, i=1,...,n,n=1,2,..., is a triangular array such that for any n,
the random pp-vectors X,i, i =1, ..., n are i.i.d. rotationally symmetric about

0 € SP~" (with Xy # 6o a.s.) Then

=Tz B=1) £ o 1),

n_\/2(pr'7_1)n~>oo




Another problem

For the more classical Watson (1983) test, that rejects the null whenever

n(p — 1)X'(Ik — 6064)X
13 2L (X6)?

we can prove the following (where we let u, = /1 — (X],60)2).

2
Wn = > Xp—1,1—a>

Theorem 3
Let Xn,i=1,...,n,n=1,2 ..., form a triangular array of random vectors
satisfying the following conditions : (i) for any n, Xp1, Xne, - . ., Xan a@re mutually

independent and share a common rotationally symmetric distribution
on SP=" with location 6y; (ii) pn — oo as n — oo; (ii) E[uZ,] > 0 for any n;
(iv) E[up]/(E[u2,])? = o(n) as n — co. Then

Wo—(pn—1) =

Wy =
2(pn—1) e

N(0,1).

See Ley, Paindaveine and Verdebout (2014).
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2(pn—1) e

See Ley, Paindaveine and Verdebout (2014).




Another problem

No universal consistency

Still...

e Imposing (iii) only excludes the degenerate case for which X, = 6, a.s.,
which would imply that W, — hence also W5' — is not well-defined.

o If (iv) does not hold, we must then have that, for some constant C > 0,

C
E[(X}160)°] > 1 — —=
[(Xn160)7] > NG
for infinitely many n. In the high-dimensional setup considered, this is
extremely pathological, since it corresponds to the distribution of X
concentrating in one particular direction — namely, the direction 8, — in the

expanding Euclidean space R,
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