

Bayes GOF

RA Lockhart

Outline

Conclusions von Mises

GOF

Conditiona tests

How?

Parametric Bootstrap

Conclusions

Bayes assisted goodness-of-fit for von Mises regression

Richard Lockhart + Contreras, Stephens, Sun

Simon Fraser University

ADISTA Brussels, May 22, 2014

Image: A math a math

∢ ≣⇒

æ

Outline

Page # -20

∢ ≣⇒

Bayes GOF

RA Lockhar

Outline

- Conclusions von Mises GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- 1 Conclusions
- 2 Von Mises regression
- **3** Goodness-of-fit
- 4 Conditional Tests of Fit
- 5 How do we implement conditional tests?
- 6 Comparison with the parametric bootstrap
- 7 Conclusions

Bayes GOF

Outline

Conclusions von Mises

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

David Blackwell said

I've worked in so many areas — I'm sort of a dilettante. Basically, I'm not interested in doing research and I never have been. I'm interested in understanding, which is quite a different thing.

イロト イヨト イヨト イヨト

æ

For when I don't finish

Bayes GOF

- Outline
- Conclusions
- von Mises GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Points of contact with talks of Garcia-Portugués, Jupp, Pewsey, Swan, Verdebout, at least. I am very grateful to have been invited here.
- We do frequentist model assessment via Bayes.
- We construct goodness-of-fit tests for directional regression models.
- They maximize a certain average power.
- Some regression models have complete sufficient statistic.
- For these models best test is conditional.
- Implementation via Markov Chain Monte Carlo.
- Methodology allows diagnosis after testing, in principle.

- ∢ ≣ ▶

Some general principles

Bayes GOF

Outline

- Conclusions
- von Mises GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Admissible nearly implies Bayes.
- Describe model departures via a stochastic process prior on a likelihood ratio.
- To test a goodness-of-fit null, pretend parameters are known, test fit, average results with respect to a posterior on the null.
- To test fit to an assumption about unobservable quantities: pretend they were observed and average results wrt a posterior.

-16

Bayes GOF

Outline

Conclusions

von Mises GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

Von Mises density relative to arc length on the unit circle:

$$f(y;\tau) = \frac{1}{2\pi I_o(\|\tau\|)} \exp\{\tau^T y\}$$

- y is a unit vector.
- $\tau = \kappa (\cos \theta_0, \sin \theta_0)^T \in \mathbb{R}^2.$
- modal angle θ₀.
- concentration parameter κ.

A 1

Add covariates

Bayes GOF RA Lockhart

Outline

Conclusions

von Mises

Condition

How?

Parametric Bootstrap

Conclusions

Responses y_i

Covariates for observation *i* form **matrix** c_i ($p \times 2$). Model: for some $p \times 1$ parameter vector β we have:

$$\tau_i = c_i^{\ \prime} \beta.$$

Likelihood is (ignoring powers of 2π):

$$L(\beta) = \exp\{\beta' S - \sum \log I_o(\|\tau_i\|)\}$$

where

$$S = \sum_{i} c_i y_i$$

is a $(p \times 1)$ complete sufficient statistic.

Location Finding

Bayes GOF

Outline

Conclusions

von Mises GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

Guttorp and Lockhart (JASA, 1988) Bayesian aircraft finding.

- Detectors at locations x_1, \ldots, x_n each in \mathbb{R}^2 .
- Lost object at $v \in \mathbb{R}^2$.
- Take bearings *y_i* at each detector.
- Model y_i as von Mises unit vector with parameter

$$\tau_i = (\mathbf{v} - \mathbf{x}_i)\kappa = \begin{bmatrix} 1 & 0 & -\mathbf{x}_{i1} \\ 0 & 1 & -\mathbf{x}_{i2} \end{bmatrix} \begin{bmatrix} \kappa \mathbf{v}_1 \\ \kappa \mathbf{v}_2 \\ \kappa \end{bmatrix} \equiv \mathbf{c}_i\beta$$

Location Finding

Bayes GOF

Outline

Conclusions

von Mises GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

Guttorp and Lockhart (JASA, 1988) Bayesian aircraft finding.

- Detectors at locations x_1, \ldots, x_n each in \mathbb{R}^2 .
- Lost object at $v \in \mathbb{R}^2$.
- Take bearings y_i at each detector.
- Model y_i as von Mises unit vector with parameter

$$\tau_i = (\mathbf{v} - \mathbf{x}_i)\kappa = \begin{bmatrix} 1 & 0 & -\mathbf{x}_{i1} \\ 0 & 1 & -\mathbf{x}_{i2} \end{bmatrix} \begin{bmatrix} \kappa \mathbf{v}_1 \\ \kappa \mathbf{v}_2 \\ \kappa \end{bmatrix} \equiv c_i\beta$$

• Warning: unrealistic model chosen to illustrate some ideas.

<ロ> (日) (日) (日) (日) (日)

æ

Concentration is higher when object is further from the detector.

The Data

Bayes GOF RA Lockhart Outline Conclusions

von Mises GOF

Conditiona tests

How?

Parametric Bootstrap

Conclusions

х

・ロト ・回ト ・ヨト ・ヨト

æ

RA Lockhart Bayes GOF

Parameters and statistics

Bayes GOF RA Lockhar

- Outline
- Conclusions
- von Mises GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Parameter vector $\beta = (v, \kappa)$ has three components.
- Complete sufficient statistic has three components:

$$S=(\sum x_i^t y_i, \sum y_i).$$

- Peter and I wrote down obvious prior for a different model and worked with it.
- Next page has posteriors (for x) for old and new models.

Image: Image:

Posteriors for location

Bayes GOF RA Lockhar Outline

Conclusion

von Mises

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

Is the von Mises model any good? [I know we don't have enough data to answer the question.]

Ingredients of today's proposal:

- Null hypothesis: the model specified above is right.
- Alternative: von Mises assumption is wrong.
- Define priors on null and alternative hypothesis.
- Maximize average power subject to level α .
- Classical Neyman-Pearson approach.
- Prior makes alternative hypothesis simple.
- Existence of complete sufficient statistic permits solution to optimization problem.

・ 回 と ・ ヨ と ・ ヨ と

2

Priors on the alternative?

-9

Bayes GOF RA Lockhart

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- On null $y_i|\beta$ has density $f_i(y_i|\beta)$.
- On alternative y_i has density $g_i(y_i, \beta) = \ell_i(y_i, \beta)f(y_i, \beta)$.
- Describe prior on alternative in two parts:
- First pick parameter value β at random density $\pi_1(\beta)$.

• Then model likelihood ratio ℓ as stochastic process.

Bayes GOF RA Lockhar

Outline

Conclusions

von Mises

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

• Our choice: for stochastic process Z:

$$\ell_i(y_i, \beta) = C \exp(aZ(y_i, \beta, x_i)/\sqrt{n})$$

- Many choices for structure of Z: one convenient one is
 Z(y, β, x) = Z*(F(y, β, x))
- Take *Z*^{*}(·) to be a "stationary" Gaussian process on 'circle'.
- Factor of $n^{-1/2}$ gives contiguous alternatives (Le Cam).
- C is approximated by $\exp(-\int Z^2(y)dy/(2n))$.
- Today's favourite choice: Z has mean 0 and

$$\operatorname{Cov}(Z(s), Z(t)) = \frac{\rho(\cos(2\pi(t-s)) - \rho)}{1 + \rho^2 - 2\rho\cos(2\pi(t-s))}.$$

Neyman Pearson lemma

Bayes GOF

- Outline
- Conclusions
- von Mises

GOF

- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

Neyman Pearson: reject for large values of <u>Marginal density on alternative</u> <u>Marginal density on Null</u>

Has form

 $E\left[\exp\{T(data, pars)\}|data\right] \times ratio of null marginals$

A ►

-≣->

Neyman Pearson lemma

- Bayes GOF
- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Neyman Pearson: reject for large values of <u>Marginal density on alternative</u> <u>Marginal density on Null</u>
- Has form

- $E[exp{T(data, pars)}|data] \times ratio of null marginals$
- Need to find least favourable prior on null for denominator.

Neyman Pearson lemma

- Bayes GOF RA Lockhart
- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Neyman Pearson: reject for large values of <u>Marginal density on alternative</u> <u>Marginal density on Null</u>
- Has form

- $E[exp{T(data, pars)}|data] \times ratio of null marginals$
- Need to find least favourable prior on null for denominator.
- Can skip this if there is a complete sufficient statistic!

Conditional tests

Bayes GOF RA Lockhart

Outline

Conclusion

von Mise

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

 $P_{H_o,\beta}(T \ge t) \le \alpha \le P_{H_1}(T \ge t)$

for all β then

lf

$$P_{H_o}(T \ge t|S) \equiv \alpha$$

<ロ> <同> <同> <同> < 同>

- < ≣ →

æ

So do conditional test.

Conditional tests

Bayes GOF RA Lockhart

Outline

Conclusion

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

 $P_{H_o,\beta}(T \ge t) \le \alpha \le P_{H_1}(T \ge t)$

for all β then

lf

$$P_{H_o}(T \ge t|S) \equiv \alpha$$

< ≣⇒

æ

So do conditional test.

But how do we do it and how well does it work?

Implementation

-5

Bayes GOF

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests

How?

- Parametric Bootstrap
- Conclusions

How do we do compute *p*-value?

- Exact distribution is essentially impossible.
- Simulation.
 - Draw many samples from conditional dist of data given *S*.

A ►

∢ ≣⇒

- Markov Chain Monte Carlo if that can't be done.
- Approximation.

MCMC

Bayes GOF

- Outline
- Conclusions
- von Mi
- GOF
- Conditional tests

How?

- Parametric Bootstrap
- Conclusions

- Often can't easily generate samples $(y_1, \ldots, y_n)|S$.
- So find a Markov Chain whose stationary distribution is

$$\mathcal{L}(y_1,\ldots,y_n|S)$$

Image: Image:

글 > 글

and which we can simulate.

• We have so far used Gibbs sampler.

Bayes GOF

- Outline
- Conclusions
- von Mise
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

Skip this slide. Our method goes like this in iid sampling case:

- Start with original sample $\theta_1, \ldots, \theta_n$ and $S_n = S$.
- Compute the sufficient statistic S_3 for $\theta_1, \theta_2, \theta_3$.
- Compute conditional density of θ₃ given S₃: joint over marginal.
- Doesn't depend on von Mises parameter! So do uniform case!
- Joint easy by change of variables. Write S₃ in polar co-ordinates R, Θ.
- Marginal: Angle Θ is uniform and independent of R.
- Marginal: Stephens (1962) uses elliptic integrals to get density of *R*.

イロン イ部ン イヨン イヨン 三日

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Tried to show conditional tests better than parametric bootstrap.
- Generate many data sets. For each data set:
- Run MCMC to compute conditional *p*-value.
- Do parametric bootstrap: estimate parameters by ml; compute new test statistic; compare observed test statistic to simulations to get unconditional *p*-value.
- Plot two p values against each other.

P-value comparisons

The kicker

0

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Two methods produce nearly equal *P*-values.
- So nearly equal levels and powers.
- This is a theorem.
- Starting with work of Lars Holst (Ann Prob).
- Conditional law of data given S is singular wrt unconditional law.
- But: conditional dist of gof tests asymptotically same as unconditional.

1

- o
- Conclusion
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Obviously no time to discuss actual data.
- Can maximize average power.
- Choice of "average" (approximate) Gaussian process on alternative.

1

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Obviously no time to discuss actual data.
- Can maximize average power.
- Choice of "average" (approximate) Gaussian process on alternative.
- Best unbiased tests are conditional tests.

1

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How?
- Parametric Bootstrap
- Conclusions

- Obviously no time to discuss actual data.
- Can maximize average power.
- Choice of "average" (approximate) Gaussian process on alternative.
- Best unbiased tests are conditional tests.
- Implementation via Markov Chain Monte Carlo.

1

- Outline
- Conclusions
- von Mises
- GOF
- Conditional tests
- How
- Parametric Bootstrap
- Conclusions

- Obviously no time to discuss actual data.
- Can maximize average power.
- Choice of "average" (approximate) Gaussian process on alternative.
- Best unbiased tests are conditional tests.
- Implementation via Markov Chain Monte Carlo.
- The parametric bootstrap nearly implements conditional tests.

Thanks

Outline

Conclusions

von Mise

GOF

Conditional tests

How?

Parametric Bootstrap

Conclusions

Thanks!

・ロン ・回 と ・ ヨン ・ ヨン

æ