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Apology -19

David Blackwell said

I’ve worked in so many areas — I’m sort of a dilettante.
Basically, I’m not interested in doing research and I never have
been. I’m interested in understanding, which is quite a different
thing.
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For when I don’t finish -18

Points of contact with talks of Garcia-Portugués, Jupp,
Pewsey, Swan, Verdebout, at least. I am very grateful to
have been invited here.

We do frequentist model assessment via Bayes.

We construct goodness-of-fit tests for directional
regression models.

They maximize a certain average power.

Some regression models have complete sufficient statistic.

For these models best test is conditional.

Implementation via Markov Chain Monte Carlo.

Methodology allows diagnosis after testing, in principle.
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Some general principles -17

Admissible nearly implies Bayes.

Describe model departures via a stochastic process prior
on a likelihood ratio.

To test a goodness-of-fit null, pretend parameters are
known, test fit, average results with respect to a posterior
on the null.

To test fit to an assumption about unobservable
quantities: pretend they were observed and average results
wrt a posterior.
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Exponential family: von Mises distribution -16

Von Mises density relative to arc length on the unit circle:

f (y ; τ) =
1

2πIo(‖τ‖)
exp{τT y}

y is a unit vector.

τ = κ(cos θ0, sin θ0)T ∈ R2.

modal angle θ0.

concentration parameter κ.
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Add covariates -15

Responses yi

Covariates for observation i form matrix ci (p × 2).

Model: for some p × 1 parameter vector β we have:

τi = cTi β.

Likelihood is (ignoring powers of 2π):

L(β) = exp{β′S −
∑

log Io(‖τi‖)}

where
S =

∑
i

ciyi

is a (p × 1) complete sufficient statistic.
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Location Finding -14

Guttorp and Lockhart (JASA, 1988) Bayesian aircraft finding.

Detectors at locations x1, . . . , xn each in R2.

Lost object at v ∈ R2.

Take bearings yi at each detector.

Model yi as von Mises unit vector with parameter

τi = (v − xi )κ =

[
1 0 −xi1
0 1 −xi2

] κv1
κv2
κ

 ≡ ciβ

Warning: unrealistic model chosen to illustrate some ideas.

Concentration is higher when object is further from the
detector.
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The Data -13
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Parameters and statistics

Parameter vector β = (v , κ) has three components.

Complete sufficient statistic has three components:

S = (
∑

x ti yi ,
∑

yi ).

Peter and I wrote down obvious prior for a different model
and worked with it.

Next page has posteriors (for x) for old and new models.
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Posteriors for location -11
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Our focus — goodness-of-fit -10

Is the von Mises model any good? [I know we don’t have
enough data to answer the question.]

Ingredients of today’s proposal:

Null hypothesis: the model specified above is right.

Alternative: von Mises assumption is wrong.

Define priors on null and alternative hypothesis.

Maximize average power subject to level α.

Classical Neyman-Pearson approach.

Prior makes alternative hypothesis simple.

Existence of complete sufficient statistic permits solution
to optimization problem.
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Priors on the alternative? -9

On null yi |β has density fi (yi |β).

On alternative yi has density gi (yi , β) = `i (yi , β)f (yi , β).

Describe prior on alternative in two parts:

First pick parameter value β at random – density π1(β).

Then model likelihood ratio ` as stochastic process.
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Priors on the alternative — more detail -8

Our choice: for stochastic process Z :

`i (yi , β) = C exp(aZ (yi , β, xi )/
√
n)

Many choices for structure of Z : one convenient one is

Z (y , β, x) = Z ∗(F (y , β, x))

Take Z ∗(·) to be a “stationary” Gaussian process on
‘circle’.

Factor of n−1/2 gives contiguous alternatives (Le Cam).

C is approximated by exp(−
∫
Z 2(y)dy/(2n)).

Today’s favourite choice: Z has mean 0 and

Cov(Z (s),Z (t)) =
ρ(cos(2π(t − s))− ρ)

1 + ρ2 − 2ρ cos(2π(t − s))
.
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Neyman Pearson lemma -7

Neyman Pearson: reject for large values of

Marginal density on alternative

Marginal density on Null

Has form

E [exp{T (data, pars)}|data]× ratio of null marginals

Need to find least favourable prior on null for denominator.

Can skip this if there is a complete sufficient statistic!
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Conditional tests -6

If
PHo ,β(T ≥ t) ≤ α ≤ PH1(T ≥ t)

for all β then
PHo (T ≥ t|S) ≡ α

So do conditional test.

But how do we do it and how well does it work?
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Implementation -5

How do we do compute p-value?

Exact distribution is essentially impossible.

Simulation.

Draw many samples from conditional dist of data given S .
Markov Chain Monte Carlo if that can’t be done.

Approximation.
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MCMC -4

Often can’t easily generate samples (y1, . . . , yn)|S .

So find a Markov Chain whose stationary distribution is

L(y1, . . . , yn|S)

and which we can simulate.

We have so far used Gibbs sampler.
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Gibbs sampling for von Mises case -3

Skip this slide. Our method goes like this in iid sampling case:

Start with original sample θ1, . . . , θn and Sn = S .

Compute the sufficient statistic S3 for θ1, θ2, θ3.

Compute conditional density of θ3 given S3: joint over
marginal.

Doesn’t depend on von Mises parameter! So do uniform
case!

Joint – easy by change of variables. Write S3 in polar
co-ordinates R,Θ.

Marginal: Angle Θ is uniform and independent of R.

Marginal: Stephens (1962) uses elliptic integrals to get
density of R.
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Comparison with other methods -2

Tried to show conditional tests better than parametric
bootstrap.

Generate many data sets. For each data set:

Run MCMC to compute conditional p-value.

Do parametric bootstrap: estimate parameters by ml;
compute new test statistic; compare observed test statistic
to simulations to get unconditional p-value.

Plot two p values against each other.
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P-value comparisons -1
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The kicker 0

Two methods produce nearly equal P-values.

So nearly equal levels and powers.

This is a theorem.

Starting with work of Lars Holst (Ann Prob).

Conditional law of data given S is singular wrt
unconditional law.

But: conditional dist of gof tests asymptotically same as
unconditional.
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Conclusions reiterated, rephrased, augmented,
contradicted? 1

Obviously no time to discuss actual data.

Can maximize average power.

Choice of “average” – (approximate) Gaussian process on
alternative.

Best unbiased tests are conditional tests.

Implementation via Markov Chain Monte Carlo.

The parametric bootstrap nearly implements conditional
tests.
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Thanks 2

Thanks!
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