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Robust Statistics

* The question: are statistical methods, which
are good under the model, reasonably good
even if the data is contaminated?

* Does contaminated data have a big effect on
the studied estimator?

e What effect?



What effect?

* The bias of a statistic
* Variance of a statistic (efficiency)

* One can control the variance by increasing
sample size but cannot control bias



Bias Control

* The influence function of statistical functional T

is defined as
T((1 — s)F + sd,) — T(F
FoT,F) = lim (A= F + 56 = T(F))
s—0 S
where ¢, denotes the point mass at x

 The gross error sensitivity of T at F is defined
by the supremum of the norm of |IF taken over all

X
GES(T,F) = sup, |IF(x, T, F)|



measure of robustness

* The gross error sensitivity can be regarded as
an approximate upper bound for the asymptotic
bias of an estimator T

 The GES measures the largest influence that a
small amount of contamination can have (to the
bias)

* |If the gross error sensitivity of a functional is
finite, then, the “corresponding” estimator is
called B-robust (for Bias)



Spherical mean

* The spherical mean T
T(F) = (J xdFy,..., [ xdF )/ (f xdFy,..., [ xdF,) |

e |tis the MLE of the FVML distribution

e IF(z;T,F) =

(@ =1 (z— @ TF)T(F))/Eg' (t)(1-t)
where t=utX, X is a random unit vector with
distribution F (density f) and g(s)=log(f(s)).



The GES measures at FVML

When F = FVML (u, k),
I IF (z; T, F) I1°=(g-1)*(1-s%)/E* g'(t)(1-t*)
where s=z'u and Eg'(t)(1-t*) = (g-1) Ay (x)/x

GES(T)F)=supz | IF(z; T,F) |l = 1/A,(x), bounded.
* |s the mean B-robust?
When x>0, the spherical mean is robust??

But of course, on a bounded parameter space, this bias is
bounded.



SGES

 The idea is that on such bounded parameter
space, we should rather compute the influence
of a contamination in the unit of a scale
functional S of the distribution

» Standardized influence function
1
SIF(z;T,S,F) = %IF(Z, T,F)
* The standardized gross error sensitivity at a
family F of distributions is defined

SGES(T, S, F) = sup ge » GES(T, F) / S(F)



SB Robustness

* The standardized gross error sensitivity at a
family F of distributions is defined

SGES(T, S, F) = sup ge » GES(T, F) / S(F)

=sup e 7 supz | IF(z; T, F) Il / S(F)

* |t measures the maximum asymptotic bias of T
in the units S(F) within the family F

* Tis called SB-robust at F if SGES(T, S, F) is
bounded



SGES

« At F={F}, SB-robustnes is B-robustness

e When F ={FVML (u, k) | k>0}, for S~2 (F) is the
Fisher Information for location of F,

SGES = sup ., (1/A;(k))/kA, ()
=SUP s v/ K/Ag(K) =

* Therefore, the asymptotic bias of T associated with
a small contamination could be very large compare
to the dispersion.



Scale

The standardized gross error sensitivity at a family F of
distributions is defined in general

SGES(T, F) =
Sup pe £sup y (IF(x,T, F)'S~Y(F)IF (x,T, F))

where S™1 (F) is the Fisher Information for T(F)



Fisher Information metric

Let v and w be tangent vectors to S at some point 6 € S*

such that v =y, (0) and w = y,(0) for some curves y,, and y, are curves
on S such that 6 =y,(0) =y,(0).
Let f(0'x) be the density of X. Define

’ Ellog(f (7, (s) X)log(f (7,(t)' X))]
0s0t

(t,5)=(0,0)

Then <v,w>, =c,v'w =(E[@,(0'X)(1-(0'X)*)]/ (k-1)v'w
ie.,c,=Elp,(@'X)1-(0'X))]/(k-1).

<V,W>, =




Fisher Information metric
Since IF (x,T,F) is tangent vector to S at T(F) € S*'

SGES = SupF Supx < IF (X,T,F), IF (XaTaF)>T(F)



Fisher Information metric

For rotationally symmetric case,
SGES(T, F) =sup,. sup, ¢, |[IF(x,T,F)|.

The definitions of SGES are equivalent for (S(F) = ¢;"*).



SB robust M-estimator on spheres

 The M-estimators proposed by Ko and Chang
(93) are then defined by

_ : -1
f= argmin pe, ™ rop(X;,0)
* This is a constrained maximization problem so

using the Lagrange multipliers method we
obtain the estimating equation

M(Sr (bl Fn) = EFn(b(X/ S) - |EFn¢(XI S) | s=0
where ¢(x, 8)=(3d/08) p(x, 6).



Influence function of M-estimator

* M(s, §, F) = Ep [Q(T(F)X)(X = (XT(F))T(F))] = 0

(q-1)Y(6'2)(z—(6%2)6)
EY(t)g'(t)(1-t2) '
where t = 8t X and X is a random unit vector

with rotationally symmetric distribution F
around 6.

* IF(z;T, F)=



SGES at VMFL(y, k)

(@—1)P(s)V1-—s?

R -

JKAg (k)

(@—1)P(s)Vv1-s?
KEY(t)(1-t?)

* SGES = sup_q<g<q JKA (k)



SIF for k=1 (dotted)
and k=10 (solid)

a) Spherical Mean

b) Optimal M-
estimator with
90% efficiency

c) Spherical Median

d) Normalize spatial
median

SIF

SIF

15 20 25 30

1.0

00 05

1.5 20 25 30

1.0

00 05

....

T T L
-1.0 0.5 0.0 0.5 1.0
t
C
L T T T T T
1.0 -0.5 0.0 0.5 1.0

SIF
10 15 20 25

SIF

3.0

00 05

15 20 25 30

1.0

0.0 05




SB-robustness of M estimators

Spherical Mean: Not SB-robust

Optimal M-estimator: SB-robust if b=0(x~1/2).
Spherical Median: SB-robust

Normalize spatial median: SB-robust



Asymptotic Distribution

ii,, : an M-estimator, the solution of the M Equation
i Y(E) (X -tip) =0

* Under regularity conditions, M-estimators are
consistent and asymptotically normal.

d

e /n(i,-1) =N(0, c;~%X) where

Y =E@t)*(1—t*)I —uu*)/(g-1) and
ci=E[Y(t)g' (t)(1 —t*)/(g-1).



Asymptotic Distribution
d
n(ﬂn'“)z —
E@Q®)*(1—¢2) E[(t)g" ()1 — e2)1*x?
One can construct the (1-a)-confidence cone
for the true parameter u.



Axial Data

RPP~1: real projective p-1 dim space
[x]={x, -x} eRPP~t = SP~1, __,

RPP~1is SP~1with x identified with —x using the
the “quotient topology”.

¢: SP~1 > RPP~1 natural projection

¢ (x)= [x]=1x, -}



Axial Data

¢: SP~1 - RPP~1 natural projection

@(x)= [x]=1x, -x}
¢: double covering

l.e., there is a 1-1 correspondence between
continuous, respectively differentiable, maps f on
SP~1 that satisfy the condition f(x)=f(-x) and
continuous , respectively differentiable, maps f on
RPP~1 5o that f=f .



Tangent Spaces

To,SP~'={x € RP~1|x'6,= 0}
: the tangent space toS? " 1at , € SP~1

Ty, -0,RPP™", the tangent space to RPp 13
{69,—6,} € RPP™1

The map ¢ defines a vector space isomorphism
p.: TSP~ = Ty, _g, RPP™*



Riemannian metric on RPP~1

For ¥, WeTy, _g,RPP™", let v, w € Ty SP~'be
such that ¢, (v)=7 and ¢, (w)=w.

Define a Riemannian metric <,> , on RPP~1
by < U, W > 5= vt w.

Riemannian metric is a positive definite inner
product on each tangent space subject to a
differentiability constraint.



Riemannian metric on RPP~1

Using this definition, each ¢,: Ty SP™" —
T _o . RPP~1is anisometry.

Riemannian metrics define a volume element,
and under this choice of Riemannian metric

for RPP~1 the (surface) volume of each RPP~1
is half that of SP~1.

In particular, the surface volume of RP? is 21
and that ofS? is 4m.

O,_QO



More generally, let S2™" = {z = [11,2y,....2,) € SP* | 21 > 0}. Except on
the ‘equatorial SP=%", ¢ is 1-1 onto RPP~. Tt follows from the change of variables

theorem, that if f: RPP~! — R! then

. 1 .
[ =] de=y[ o 1)
RPr-1

p_]' y4 -1
S+ Sp



Riemannian metric on RPP~1

The relevant group is G=SO(p) with action
A-{0,—0} ={A0,—A0} where 0 represent
generic element of SP~1. For specific A, let
f:SP~1 - RPP~1 pbe the map f(x)={4x, —Ax} .
This induced a map f: RPP~1 = RPP~1 such
that f = f ¢ and G-action A- {6, —60} = {40, —A6}
is well defined.



Let 8, € SP~1be 0,=[1,0,...,0] and 8, € RPP~1 be B,= ¢(0,)= {0,,
-6,}.

If A- 0,=0,, then either ABy=6,, or AB,= -0, .

In the former case A has the form

[0 AJ (2) where A; € SO(p-1) and

in the latter case,

-1 0
[ 0 AJ (3) where A; € SO_(p-1).

where SO_(p-1) = {4,= (p-1)x(p-1) matrix | A;°4,=1 & det(A)=-1}

 Thus the isotropy group H is the subgroup of all matrices of the
forms (2) or (3).



¢. is an isomorphism Ty SP~* — Ty RPP~! and
T_g,SP~1 — T RPP™

We represent Tz RPP~" as Ty SP~'= RP™'={[0, e1] | e1 € RP™'}
using o.,.

Then AEH, A- [0,e1] = [0,A,el] if A has form (2) and A+ [0, e1]
|0, —A;el] if A has form (3).

Since the representation of SO(p - 1) on RP~1is irreducible the
representation of H on T~9~0RP?"1 is a fortiori irreducible



 Thus in Propositions 1 and 2 of Chang and Rivest
(2001), there is only one irreducible subspace and
it only remains to identify the constants c =cl
and d = d1 of Chang-Rivest equation (16).



Axial Data

Consider the distribution f on SP~1 with density of the
form f(x; 0) = f,[(xt0)?%] forx, 8 eSP~1.

Using (1), if f is defined by
f(p(x); (0)) = 2f,[(xt0)?], f is a density on RPP~1.

Consider objective functions

P (d(x); §(0)) = pol(x*0)?]



M-estimator

For objective functions g (¢(x); ¢(8)) = po[(xt6)?],
The M-estimators are then defined by

Ta)

6= argmin g, o 0" Ty B (H(x1); H(6))
=argmin 4_.p-1 n~tyt, po[(xitH)z]



SB robust M-estimator

* This is a constrained maximization problem so
using the Lagrange multipliers method we
obtain the estimating equation

M(s, &, Fy) = B &(X, 5) - |Ep &(X, s)|s =0
where ¢(x, 8)=(3/00) p(x, 6).

When p(x, 8) = p(x'0) = p [(x¢8)?],

P(t)=- p'(t) =p'(t*)*2t



Influence function of M-estimator
* M(s, Y, F) = Egr [Q(T(F)X)(X = (XT(F))T(F))] =0

(a-1)yp(0°2)(z—(0"2)6)

T )T o oa—)

as before.



Robustness of M-estimator

* For MLE of Scheidegger-Watson distribution F
and X~F , and Y (t)=2t

IF(z;T, F) =(g-1)(a41-1) "1¢V1 — ¢
where A;is the largest eigenvalue of EXX".

AT SW= {f(0, k) = (Wybg (k) )™ exp{x (68'x)*} |k > 0},
SGES(T, SW)=sup,sgsup; |IF(z; T, F| /O(k~1/?) =c0 and
MLE is not SB-robust.



SB Robustness of M-estimators

Can show that at SW =
{f(6, k) = (Wybg (k)™ exp{k (6*x)*} |k > 0}, spherical
median axis, normalized spatial median, and optimal M-

estimator with 1 bounded by O(k _1/2) are SB-robust.



Asymptotic Distribution of M
estimators (Brown 85)

X :sample space

O : parameter space = R’

f(x,0): family of densities

p(x,0): objective function

X =(X,,....X,) sample from f(x,0,)

6 = argmin, Ep(Xl.,H)
S(X,0) = Eap(Xi,H) /00 =0 : estimating equation
V,, (0) = E,S5(X,6,)

: 0
V(o) = PY) | 9-6,V5, (0



Asymptotic Distribution of M
estimators (Brown 85)

Under regularity conditions,
n">(-6,)—~—>N(0,B"'A(B™))
where A =1im Cov, (5(X,0,))/n and

B=1im,v,(6,)/n



Asymptotic Distribution of M
estimators on Manifolds

Chang and Tsai ('99) Reformulate A and B in a coordinate-free

manner for a differentiable manifold ©.
y= (Vl,--.,)/q) :R' = R’ acurve
f . Rq — Rl

(fo1)(0)= E O, (0)

depends only upon a base point y(0) and a tangent vector y'(0).



Asymptotic Distribution of M
estimators on Manifolds

tan gent vector to ® at 6, € © is an equivalence class of curves
satistying y(0) = 6,, where two curves y, and y, are equivalent (defines
the same tangent vector at 8) if (foy,)'(0)=(foy,)'(0) for any
f:®—=R"

T, © = {tangent vectors at 6} 1s a vector space



Reformulation of A and B

Chang and Tsai ('99) reformulated A as a family of inner products,

one inner product on each 7,0 as follows.

<(0), 7.(0) >A=60v9[<d1 p(X.7, ()]

d
X Bl
P(X, 7, (D)X .

=0 5=0

where y, and y, are curves with v,(0) = v,(0)=6.

A 1s a Riemannian metric on ©O.



Reformulation of A and B

B is reformulated as a family of bilinear form,

one on each 7,0 by

<1(0), 7.(0) >B=E9[<di log(f(X.7,(sM)].

d
IO(X’ Vz (t))(a

t=0 s=0

under some conditions,
82
dtos

<7,(0),7,(0) > 5= —E,[( o(X,y(s,)))]

s=0
t=0

where y : R> — O satisfies y(0,0) =0, ¥, (s) =y(s,0),
and y,(¢) =y(0,1).




Chang and Rivest Theorem (2001)

PROPOSITION 1. Suppose the compact Lie group # s represented on the
real vector space V. Write V = ©7; as a direct sum of minimally invariant sub-
spaces. Suppose (, )q is an #-invariant positive definite inner product and (, )

an A-invariant symmetric bilinear form on 7. Then:
(a) There exist constants c¢; such that {,) = ¢;{, ), on 7.
(b) If 7; and ¥ ; are inequivalent as representations of #, they are orthogonal

under {,) (and {, ),).



Thus, write Ty @ = §7; as a direct sum of minimally invariant subspaces

and suppose the 7; are all inequivalent. Then there are constants ¢; and d;
such that

(8,8)4 =) ¢;(8;,8;)

l

(16) (8,8)p=) d; <¥;,9;)

l l

5=Y0, ¢l
I

This process constructs an asymptotic distribution in Ty ©, but 0c0. Let
Gy,: Ty,0 — O be any map such that @, (0) = 6, and such that the derivative
of @y at 0 is the identity map. This latter condition means that it v € T O,

then %{ _oPs,(tv) = v. Brown’s theorem becomes the following.



PROPOSITION 2. Suppose X = (X,,...,X,) s a sample frr:im f(x: 0[,) and
that & minimizes Y, p(X;, 0). Let § = @Hﬂ(h) and h = it h where h 7.

Then the asymptotic distribution of n'/2h is multivariate normal with density
proportional to

EXP(_gz

z'

d?

C;

—(h;, h.), ), h.e?,i=1,...,r.
In particular,

Z

is asymptotically y*(dim ©),



calculate cand d

To calculate c and d it suffices to look only at
Ty, RPP™'.

Let h =¢b,([0,h]), k =¢.([0,k]) € T RPP™"
where h, k € RP~1. Let y4(t) and ¥,(s) be curves
in SP~1 such that y;(0) = ¥,(0)= 6, ¥1'=[0,h],
and ¥, =[0,k]. Then if 71 (t) = ¢d(y4(t)) and Y5 (s) =

d(y2(s)), we have 71" (0)= ¢.([0,h])= h and
similarly 7, (0)=k .



By definition

Chiisa = cm%[

o) (.
: ( mien
Jo Gl

)
)

= o (5]l (l— lle (o)1) hllt)?
- 4/5:»—1 (po[(;zftQO)Q][O,h.]:r) (pb-:(tlft90)2];z*t[0.k]t) f(x;6p)
= 4 [0, h] Eg, l(p;)[(.l?t%)ﬂ)z;r;rt [0, k]". (4)

Here we have used (see Lemma 1 of Chang-Rivest)

d
E9° (dz‘

o w») 0 5



Let u = 2'f and write Eg, (22" | u)

= u?(fpf) + 1 (] Bofl). Thus (4) yields

<hk>y = — [(po(u ))2(1 — ) fylu )]

p=1Jg-1

and hence

¢c = —

p—1

. [(/};)(112))2 (1-u) fo(th)] |



Similarly, using again (5) and letting gy =

o d
<hk>p = Eg [(E logf &% >(d‘§

d
= 2/ (dt 90[ 71 ) (
Si_l Ll It=

= 4(0,h] Ey, _gé,[(;rteo)Q] pol(z'0p)?] ;r;r] 0, k",

o)

el 2]>fo[ (8}

Hence

e GG A

p - ]. Sp—l



Estimating constants c and d

According to equation (6)

c = pf Bt [(p&((xtﬂ)z))? (1- <Xte)2>] .
[t follows that if Xl ..... X, € RPP!is a sample from a density f of the form
F(o(x); 6(0)) = 2fo[(20)?], then
s Z [(p;(<Xfé>2>)2u - <X§9>2>] (7)
n(p—1) =
is a consistent estimator of ¢. Here Xy, ..., X, € SE_I satisty o(X;) = Xi and C)((;).

with 6 € Sﬁ_l. is the M-estimate defined by p.



To develop a sample estimate for d, we use equation (12) of Chang-Rivest.

o 0? o
<hk>p = _E90 [()l‘ds t,s)=(0,0) (&1 S))]
9/ ” (@4 9)| Al
— -9 T.7(t, s
Spl Otds (t,s)=(0,0) o ! !
o
- _F, | At
% | 0t0s (t,s):(0,0)p 2l S))]
o |- (e (t.5)]
= - S m—— €I Y\l,S
" _atas (tas)z(oao)po C

where 7(t, s) satisfies ¥(t,0) = 44(t) and (0, s) = Jo(s).



Assume h has unit length, and let ~;(t) = cos(t)fp+sin(t)h and (¢, s) = y1(t+s).
Then

-
| Ot0s
= —Eg, 4ht po(u )17;1:"’/2, — ‘2/)0(112)11.]

= —Eg,h' [4/)0 (u?)zat — 2 pg('uQ)u] h,

<I~2.,I~2. >p = —Ego

/)0[( cos(t + s)fp + sin(t + s)h)) ]

ts

where we have used h'h = 1. Thus. using Eg, (zz! | u) = u*(0p0}) + lp%‘f (1 — 6o0%)

~ -~

<hh>p = —Egh' l4p0(lt )1 — ul — 2/)6(’11.2)11] h.
p—




It follows

i = 12[i.p&(Xfé)?)(l—<X§é>2>—2ps<<X§é>2><X§é>]. 3

Note that the estimates (7) and (8) do not require knowledge of the underlying

density fj.



