Robust Axial Data Analysis

Daijin Ko and Ted Chang
University of Texas at San Antonio
and University of Virginia

Robustness

- Robustness
- SB Robustness on spheres
- Robustness on Real projective space
- M-estimation of axial location

Robust Statistics

- The question: are statistical methods, which are good under the model, reasonably good even if the data is contaminated?
- Does contaminated data have a big effect on the studied estimator?
- What effect?

What effect?

- The bias of a statistic
- Variance of a statistic (efficiency)
- One can control the variance by increasing sample size but cannot control bias

Bias Control

The influence function of statistical functional T is defined as

$$IF(x,T,F) = \lim_{s \to 0} \frac{(T((1-s)F + s\delta_x) - T(F))}{s}$$

where δ_x denotes the point mass at x

 The gross error sensitivity of T at F is defined by the supremum of the norm of IF taken over all x

$$GES(T,F) = \sup_{x} |IF(x, T, F)|$$

measure of robustness

 The gross error sensitivity can be regarded as an approximate upper bound for the asymptotic bias of an estimator T

 The GES measures the largest influence that a small amount of contamination can have (to the bias)

 If the gross error sensitivity of a functional is finite, then, the "corresponding" estimator is called B-robust (for Bias)

Spherical mean

The spherical mean T

$$T(F) = (\int x dF_1, ..., \int x dF_q) / \| (\int x dF_1, ..., \int x dF_q) \|$$

It is the MLE of the FVML distribution

•
$$IF(z;T,F)=$$
 $(q-1)(z-(z^tT(F))T(F))/Eg'(t)(1-t^2)$ where $t=\mu^t X$, X is a random unit vector with distribution F (density f) and $g(s)=log(f(s))$.

The GES measures at FVML

When F = FVML
$$(\mu, \kappa)$$
,
 $||IF(z; T, F)||^2 = (q-1)^2 (1-s^2)/E^2 g'(t)(1-t^2)$
where $s=z^t \mu$ and $Eg'(t)(1-t^2) = (q-1) A_q(\kappa)/\kappa$

GES(T,F)=
$$\sup_{Z} \| IF(z;T,F) \| = 1/A_q(\kappa)$$
, bounded.

Is the mean B-robust?

When $\kappa>0$, the spherical mean is robust??

But of course, on a bounded parameter space, this bias is bounded.

SGES

- The idea is that on such bounded parameter space, we should rather compute the influence of a contamination in the unit of a scale functional S of the distribution
- Standardized influence function

$$SIF(z;T,S,F) = \frac{1}{S(F)}IF(z;T,F)$$

• The standardized gross error sensitivity at a family ${\mathcal F}$ of distributions is defined

SGES(T, S,
$$\mathcal{F}$$
) = sup $_{\mathsf{F} \subset \mathcal{F}}$ GES(T, F) / S(F)

SB Robustness

• The standardized gross error sensitivity at a family ${\mathcal F}$ of distributions is defined

SGES(T, S,
$$\mathcal{F}$$
) = sup $_{\mathsf{F} \in \mathcal{F}}$ GES(T, F) / S(F)
= sup $_{\mathsf{F} \in \mathcal{F}}$ sup $_{Z} \parallel IF(z; T, F) \parallel /$ S(F)

• It measures the maximum asymptotic bias of T in the units S(F) within the family ${\mathcal F}$

• T is called SB-robust at $\mathcal F$ if SGES(T, S, $\mathcal F$) is bounded

SGES

- At F={F}, SB-robustnes is B-robustness
- When $\mathcal{F} = \{FVML(\mu, \kappa) \mid \kappa > 0\}$, for S^{-2} (F) is the Fisher Information for location of F,

SGES =
$$\sup_{\kappa>0} (1/A_q(\kappa)) \sqrt{\kappa A_q(\kappa)}$$

= $\sup_{\kappa>0} \sqrt{\kappa/A_q(\kappa)} = \infty$

 Therefore, the asymptotic bias of T associated with a small contamination could be very large compare to the dispersion.

Scale

The standardized gross error sensitivity at a family ${\mathcal F}$ of distributions is defined in general

SGES(T,
$$\mathcal{F}$$
) =
$$\sup_{F \in \mathcal{F}} \sup_{X} (IF(x,T,F)^{t}S^{-1}(F)IF(x,T,F))$$
 where S^{-1} (F) is the Fisher Information for T(F)

Fisher Information metric

Let v and w be tangent vectors to S^{k-1} at some point $\theta \in S^{k-1}$ such that $v = \gamma_1'(0)$ and $w = \gamma_2'(0)$ for some curves γ_1 , and γ_2 are curves on S^{k-1} such that $\theta = \gamma_1(0) = \gamma_2(0)$.

Let $f(\theta'x)$ be the density of X. Define

$$\langle v, w \rangle_{\theta} = \frac{\partial^2}{\partial s \partial t} \Big|_{(t,s)=(0,0)} E[\log(f(\gamma_1(s)^t X) \log(f(\gamma_2(t)^t X))]$$

Then $\langle v, w \rangle_{\theta} = c_f v^t w = (E[\varphi_f(\theta'X)(1 - (\theta'X)^2)]/(k-1)v^t w$ $i.e., c_f = (E[\varphi_f(\theta'X)(1 - (\theta'X)^2)]/(k-1).$

Fisher Information metric

Since IF (x,T,F) is tangent vector to S^{k-1} at $T(F) \in S^{k-1}$

$$SGES = \sup_{F} \sup_{x} \langle IF(x,T,F), IF(x,T,F) \rangle_{T(F)}$$

Fisher Information metric

For rotationally symmetric case,

$$SGES(T, F) = \sup_{F} \sup_{x} c_f ||IF(x, T, F)||.$$

The definitions of SGES are equivalent for $(S(F) = c_f^{-1/2})$.

SB robust M-estimator on spheres

 The M-estimators proposed by Ko and Chang (93) are then defined by

$$\hat{\theta} = argmin_{\theta \in \Omega_a} n^{-1} \sum_{i=1}^n \rho(X_i, \theta)$$

 This is a constrained maximization problem so using the Lagrange multipliers method we obtain the estimating equation

M(s,
$$\phi$$
, F_n) = $E_{F_n}\phi(X, s) - |E_{F_n}\phi(X, s)|s = 0$
where $\phi(x, \theta) = (\partial/\partial\theta) \rho(x, \theta)$.

Influence function of M-estimator

• $M(s, \psi, F) = E_F [\psi(T(F)'X)(X - (X'T(F))T(F))] = 0$

• IF(z;T, F)=
$$\frac{(q-1)\psi(\theta^t z)(z-(\theta^t z)\theta)}{E\psi(t)g'(t)(1-t^2)}$$
,

where $t = \theta^t X$ and X is a random unit vector with rotationally symmetric distribution F around θ .

SGES at VMFL(μ , κ)

• SIF =
$$\frac{(q-1)\psi(s)\sqrt{1-s^2}}{\kappa E\psi(t)(1-t^2)}\sqrt{\kappa A_q(\kappa)}$$

•
$$SGES = \sup_{-1 \le s \le 1} \frac{(q-1)\psi(s)\sqrt{1-s^2}}{\kappa E \psi(t)(1-t^2)} \sqrt{\kappa A_q(\kappa)}$$

SIF for κ =1 (dotted) and κ =10 (solid)

- a) Spherical Mean
- b) Optimal Mestimator with 90% efficiency
- c) Spherical Median
- d) Normalize spatial median

SB-robustness of M estimators

Spherical Mean: Not SB-robust

Optimal M-estimator: SB-robust if b=O($\kappa^{-1/2}$).

Spherical Median: SB-robust

Normalize spatial median: SB-robust

Asymptotic Distribution

 $\hat{\mu}_n$: an M-estimator, the solution of the M Equation $\sum_{i=1}^n \psi(\hat{t}_i)(X_i - \hat{t}_i \mu) = 0$

- Under regularity conditions, M-estimators are consistent and asymptotically normal.
- $\sqrt{n}(\hat{\mu}_n \mu) \stackrel{d}{\to} N(0, c_1^{-2}\Sigma)$ where $\Sigma = E(\psi(t)^2 (1 t^2))(I \mu \mu^t)/(q-1) \text{ and } c_1 = E[\psi(t)g'(t)(1 t^2)]/(q-1).$

Asymptotic Distribution

$$n(\hat{\mu}_n - \mu)^2 \xrightarrow{d}$$

$$E(\psi(t)^2 (1 - t^2)) / E[\psi(t)g'(t)(1 - t^2)] * \chi^2_{q-1}$$

One can construct the $(1-\alpha)$ -confidence cone for the true parameter μ .

Axial Data

 RP^{p-1} : real projective p-1 dim space [x]={x, -x} $\epsilon RP^{p-1} = S^{p-1}_{x \sim -x}$

 RP^{p-1} is S^{p-1} with x identified with -x using the the "quotient topology".

 $\phi: S^{p-1} \to \mathbb{R}P^{p-1}$, natural projection $\phi(x) = [x] = \{x, -x\}$

Axial Data

 $\phi: S^{p-1} \to \mathbb{R}P^{p-1}$, natural projection

$$\phi(x) = [x] = \{x, -x\}$$

 ϕ : double covering

i.e., there is a 1-1 correspondence between continuous, respectively differentiable, maps f on S^{p-1} that satisfy the condition f(x)=f(-x) and continuous, respectively differentiable, maps \tilde{f} on RP^{p-1} so that $f=\tilde{f}$ ϕ .

Tangent Spaces

$$T_{\theta_0}S^{p-1}=\{\mathbf{x}\in R^{p-1}\,|\,\mathbf{x}^t\theta_0=0\}$$
 : the tangent space to S^{p-1} at $\theta_0\in S^{p-1}$.
$$T_{\theta_0,-\theta_0}\mathbf{R}P^{p-1} \text{ , the tangent space to } \mathbf{R}P^{p-1}\text{at }\{\theta_0,-\theta_0\}\in \mathbf{R}P^{p-1}$$

The map ϕ defines a vector space isomorphism $\phi_*: T_{\theta_0}S^{p-1} \to T_{\theta_0-\theta_0}\mathbf{R}P^{p-1}$

Riemannian metric on RP^{p-1}

For \widetilde{v} , $\widetilde{w} \in T_{\theta_0, -\theta_0} RP^{p-1}$, let v, $w \in T_{\theta_0} S^{p-1}$ be such that $\phi_*(v) = \widetilde{v}$ and $\phi_*(w) = \widetilde{w}$. Define a Riemannian metric <, > $_0$ on RP^{p-1} by < \widetilde{v} , \widetilde{w} > $_0 = v^t$ w.

Riemannian metric is a positive definite inner product on each tangent space subject to a differentiability constraint.

Riemannian metric on RP^{p-1}

Using this definition, each $\phi_*: T_{\theta_0}S^{p-1} \to T_{\theta_0,-\theta_0}RP^{p-1}$ is an isometry.

Riemannian metrics define a volume element, and under this choice of Riemannian metric for RP^{p-1} , the (surface) volume of each RP^{p-1} is half that of S^{p-1} .

In particular, the surface volume of $\mathbf{R}P^2$ is 2π and that of S^2 is 4π .

More generally, let $S_+^{p-1} = \{x = [x_1, x_2, \dots, x_p] \in S^{p-1} \mid x_1 \geq 0\}$. Except on the 'equatorial S^{p-2} ', ϕ is 1-1 onto RP^{p-1} . It follows from the change of variables theorem, that if $\tilde{f}: RP^{p-1} \to R^1$ then

$$\int_{RP^{p-1}} \tilde{f} = \int_{S_{\perp}^{p-1}} \tilde{f}\phi = \frac{1}{2} \int_{S^{p-1}} \tilde{f}\phi \tag{1}$$

Riemannian metric on RP^{p-1}

The relevant group is G=SO(p) with action $A \cdot \{\theta, -\theta\} = \{A\theta, -A\theta\}$ where θ represent generic element of S^{p-1} . For specific A, let $f:S^{p-1}\to \mathbb{R}P^{p-1}$ be the map $f(x)=\{Ax,-Ax\}$. This induced a map $\tilde{f}: \mathbb{R}P^{p-1} \to \mathbb{R}P^{p-1}$ such that $f = \tilde{f} \phi$ and G-action $A \cdot \{\theta, -\theta\} = \{A\theta, -A\theta\}$ is well defined.

Let $\theta_0 \in S^{p-1}$ be $\theta_0 = [1,0,...,0]$ and $\tilde{\theta}_0 \in RP^{p-1}$ be $\tilde{\theta}_0 = \phi(\theta_0) = \{\theta_0, -\theta_0\}$.

If
$$A \cdot \tilde{\theta}_0 = \tilde{\theta}_0$$
, then either $A\theta_0 = \theta_0$ or $A\theta_0 = -\theta_0$.

In the former case A has the form

$$\begin{bmatrix} 1 & 0 \\ 0 & A_1 \end{bmatrix}$$
 (2) where $A_1 \in SO(p-1)$ and in the latter case,

$$\begin{bmatrix} -1 & 0 \\ 0 & A_1 \end{bmatrix}$$
 (3) where $A_1 \in SO_{(p-1)}$.

where
$$SO_{(p-1)} = \{A_1 = (p-1)x(p-1) \text{ matrix } | A_1^t A_1 = 1 \& \det(A) = -1\}$$

 Thus the isotropy group H is the subgroup of all matrices of the forms (2) or (3). ϕ_* is an isomorphism $T_{\theta_0}S^{p-1}\to T_{\widetilde{\theta}_0}\mathbf{R}P^{p-1}$ and $T_{-\theta_0}S^{p-1}\to T_{\widetilde{\theta}_0}\mathbf{R}P^{p-1}$

We represent $T_{\widetilde{\theta}_0} RP^{p-1}$ as $T_{\theta_0} S^{p-1} = R^{p-1} = \{[0, e1] \mid e1 \in R^{p-1}\}$ using ϕ_* .

Then $A \in H$, $A \cdot [0, e1] = [0, A_1 e1]$ if A has form (2) and $A \cdot [0, e1] = [0, -A_1 e1]$ if A has form (3).

Since the representation of SO(p – 1) on R^{p-1} is irreducible the representation of H on $T_{\widetilde{\theta}_0} RP^{p-1}$ is a fortiori irreducible

 Thus in Propositions 1 and 2 of Chang and Rivest (2001), there is only one irreducible subspace and it only remains to identify the constants c = c1 and d = d1 of Chang-Rivest equation (16).

Axial Data

Consider the distribution f on S^{p-1} with density of the form $f(x; \theta) = f_0[(x^t \theta)^2]$ for $x, \theta \in S^{p-1}$.

Using (1), if f is defined by

 $\tilde{f}(\phi(x); \phi(\theta)) = 2f_0[(x^t\theta)^2], \tilde{f}$ is a density on RP^{p-1} .

Consider objective functions

$$\tilde{\rho}(\phi(\mathbf{x});\phi(\theta)) = \rho_0[(x^t\theta)^2]$$

M-estimator

For objective functions $\tilde{\rho}$ (ϕ (x); ϕ (θ)) = ρ_0 [($x^t\theta$)²], The M-estimators are then defined by

$$\hat{\theta} = argmin_{\theta \in S^{p-1}} n^{-1} \sum_{i=1}^{n} \tilde{\rho} (\phi(x_i); \phi(\theta))$$

$$= argmin_{\theta \in S^{p-1}} n^{-1} \sum_{i=1}^{n} \rho_0 [(x_i^t \theta)^2]$$

SB robust M-estimator

 This is a constrained maximization problem so using the Lagrange multipliers method we obtain the estimating equation

$$M(s, \phi, F_n) = E_{F_n} \phi(X, s) - |E_{F_n} \phi(X, s)|s = 0$$
 where $\phi(x, \theta) = (\partial/\partial\theta) \rho(x, \theta)$. When $\rho(x, \theta) = \rho(x^t \theta) = \widetilde{\rho} \left[(x^t \theta)^2 \right]$,
$$\psi(t) = -\rho'(t) = \widetilde{\rho}'(t^2) * 2t$$

Influence function of M-estimator

• $M(s, \psi, F) = E_F [\psi(T(F)'X)(X - (X'T(F))T(F))] = 0$

• IF(z;T, F)=
$$\frac{(q-1)\psi(\theta^t z)(z-(\theta^t z)\theta)}{E\psi(t)g'(t)(1-t^2)},$$
as before.

Robustness of M-estimator

• For MLE of Scheidegger-Watson distribution F and X~F , and ψ (t)=2t

$$IF(z;T, F) = (q-1)(q\lambda_1-1)^{-1}t\sqrt{1-t^2}$$

where λ_1 is the largest eigenvalue of EXX^t.

AT SW= {f(θ, κ) = $(w_q b_q(\kappa))^{-1} \exp{\kappa (\theta^t x)^2} | \kappa > 0$ }, SGES(T, SW)= $\sup_{\kappa>0} \sup_t |IF(z; T, F)| / O(\kappa^{-1/2}) = \infty$ and MLE is not SB-robust.

SB Robustness of M-estimators

Can show that at SW = $\{f(\theta,\kappa) = (w_q b_q(\kappa))^{-1} \exp\{\kappa (\theta^t x)^2\} | \kappa > 0\}$, spherical median axis, normalized spatial median, and optimal Mestimator with ψ bounded by $O(k^{-1/2})$ are SB-robust.

Asymptotic Distribution of M estimators (Brown 85)

X: sample space

 Θ : parameter space = R^q

 $f(x,\theta)$: family of densities

 $\rho(x,\theta)$: objective function

 $X = (X_1,...,X_n)$ sample from $f(x,\theta_0)$

$$\hat{\theta} = \arg\min_{\theta} \sum_{i} \rho(X_i, \theta)$$

 $S(X,\theta) = \sum_{i} \partial \rho(X_i,\theta) / \partial \theta = 0$: estimating equation

$$v_{\theta_0}(\theta) = E_{\theta}S(X, \theta_0)$$

$$\mathbf{v}_{\theta_0}'(\theta_0) = \frac{\partial}{\partial \theta} \mathbf{1}_{\theta = \theta_0} \mathbf{v}_{\theta_0}(\theta)$$

Asymptotic Distribution of M estimators (Brown 85)

Under regularity conditions,

$$n^{1/2}(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, B^{-1}A(B^{-1})^t)$$
where $A = \lim_{n} Cov_{\theta_0}(S(X, \theta_0)) / n$ and

$$B = \lim_{n} v_{\theta_0}'(\theta_0) / n$$

Asymptotic Distribution of M estimators on Manifolds

Chang and Tsai ('99) Reformulate A and B in a coordinate-free manner for a differentiable manifold Θ .

$$\gamma = (\gamma_1, ..., \gamma_q) : R^1 \to R^q \quad a \quad curve$$

$$f : R^q \to R^1$$

$$(f \circ \gamma)'(0) = \sum_i \frac{\partial f}{\partial x_i} (\gamma(0)) \cdot \gamma_i'(0)$$

depends only upon a base point $\gamma(0)$ and a tangent vector $\gamma'(0)$.

Asymptotic Distribution of M estimators on Manifolds

tangent vector to Θ at $\theta_0 \in \Theta$ is an equivalence class of curves satisfying $\gamma(0) = \theta_0$, where two curves γ_1 and γ_1 are equivalent (defines the same tangent vector at θ) if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for any $f : \Theta \to R^1$.

 $T_{\theta_0}\Theta = \{\text{tangent vectors at } \theta_0\} \text{ is a vector space}$

Reformulation of A and B

Chang and Tsai ('99) reformulated A as a family of inner products, one inner product on each $T_{\theta}\Theta$ as follows.

$$<\gamma_1'(0), \gamma_2'(0)>_A = C \operatorname{ov}_{\theta}[(\frac{d}{dt}\Big|_{t=0} \rho(X, \gamma_1(t)))(\frac{d}{ds}\Big|_{s=0} \rho(X, \gamma_2(s)))]$$

where γ_1 and γ_2 are curves with $\gamma_1(0) = \gamma_2(0) = \theta$.

A is a Riemannian metric on Θ .

Reformulation of A and B

B is reformulated as a family of bilinear form, one on each $T_{\theta}\Theta$ by

$$<\gamma_1'(0), \gamma_2'(0)>_B = E_{\theta}[(\frac{d}{dt}\Big|_{t=0} \rho(X, \gamma_2(t))(\frac{d}{ds}\Big|_{s=0} \log(f(X, \gamma_2(s)))].$$

under some conditions,

$$\langle \gamma_1'(0), \gamma_2'(0) \rangle_B = -E_{\theta} \left[\left(\frac{\partial^2}{\partial t \partial s} \Big|_{\substack{s=0 \ t=0}} \rho(X, \gamma(s, t)) \right) \right]$$

where $\gamma : \mathbb{R}^2 \to \Theta$ satisfies $\gamma(0,0) = \theta$, $\gamma_1(s) = \gamma(s,0)$, and $\gamma_2(t) = \gamma(0,t)$.

Chang and Rivest Theorem (2001)

PROPOSITION 1. Suppose the compact Lie group \mathscr{H} is represented on the real vector space \mathscr{V} . Write $\mathscr{V} = \oplus \mathscr{V}_i$ as a direct sum of minimally invariant subspaces. Suppose \langle , \rangle_0 is an \mathscr{H} -invariant positive definite inner product and \langle , \rangle an \mathscr{H} -invariant symmetric bilinear form on \mathscr{V} . Then:

- (a) There exist constants c_i such that $\langle , \rangle = c_i \langle , \rangle_0$ on \mathcal{V}_i .
- (b) If V_i and V_j are inequivalent as representations of \mathcal{H} , they are orthogonal under \langle , \rangle (and \langle , \rangle_0).

Thus, write $T_{\theta_0}\Theta=\oplus \mathscr{V}_i$ as a direct sum of minimally invariant subspaces and suppose the \mathscr{V}_i are all inequivalent. Then there are constants c_i and d_i such that

(16)
$$\langle \mathbf{\delta}, \mathbf{\delta} \rangle_{A} = \sum_{i} c_{i} \langle \mathbf{\delta}_{i}, \mathbf{\delta}_{i} \rangle_{0}$$

$$\langle \mathbf{\delta}, \mathbf{\delta} \rangle_{B} = \sum_{i} d_{i} \langle \mathbf{\delta}_{i}, \mathbf{\delta}_{i} \rangle_{0}$$

$$\delta = \sum_{i} \mathbf{\delta}_{i}, \qquad \mathbf{\delta}_{i} \in \mathcal{V}_{i}.$$

This process constructs an asymptotic distribution in $T_{\theta_0}\mathbf{\Theta}$, but $\hat{\mathbf{\theta}} \in \mathbf{\Theta}$. Let $\Phi_{\theta_0} \colon T_{\theta_0}\mathbf{\Theta} \to \mathbf{\Theta}$ be any map such that $\Phi_{\theta_0}(\mathbf{0}) = \mathbf{\theta}_0$ and such that the derivative of Φ_{θ_0} at $\mathbf{0}$ is the identity map. This latter condition means that if $\mathbf{v} \in T_{\theta_0}\mathbf{\Theta}$, then $\frac{d}{dt}|_{t=0}\Phi_{\theta_0}(t\mathbf{v}) = \mathbf{v}$. Brown's theorem becomes the following.

PROPOSITION 2. Suppose $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ is a sample from $f(\mathbf{x}; \boldsymbol{\theta}_0)$ and that $\hat{\boldsymbol{\theta}}$ minimizes $\sum_i \rho(\mathbf{X}_i, \boldsymbol{\theta})$. Let $\hat{\boldsymbol{\theta}} = \Phi_{\boldsymbol{\theta}_0}(\hat{\mathbf{h}})$ and $\hat{\mathbf{h}} = \sum_{i=1}^{i=r} \hat{\mathbf{h}}_i$ where $\hat{\mathbf{h}}_i \in \mathcal{V}_i$. Then the asymptotic distribution of $n^{1/2}\hat{\mathbf{h}}$ is multivariate normal with density proportional to

$$\exp\left(-\frac{n}{2}\sum_{i}\frac{d_{i}^{2}}{c_{i}}\langle\mathbf{h}_{i},\mathbf{h}_{i}\rangle_{0}\right), \quad \mathbf{h}_{i} \in \mathcal{V}_{i}, \ i = 1,\ldots,r.$$

In particular,

$$n\sum_{i}\frac{d_{i}^{2}}{c_{i}}\langle\hat{\mathbf{h}}_{i},\hat{\mathbf{h}}_{i}\rangle_{0}$$

is asymptotically $\chi^2(\dim \mathbf{\Theta})$.

calculate c and d

To calculate c and d it suffices to look only at $T_{\widetilde{\theta}_0} RP^{p-1}$.

Let $\widetilde{h} = \phi_*([0,h])$, $\widetilde{k} = \phi_*([0,k]) \in T_{\widetilde{\theta}_0} \mathbf{R} P^{p-1}$ where h, $\mathbf{k} \in R^{p-1}$. Let $\gamma_1(\mathbf{t})$ and $\gamma_2(\mathbf{s})$ be curves in S^{p-1} such that $\gamma_1(0) = \gamma_2(0) = \theta_0$, ${\gamma_1}' = [0,h]$, and ${\gamma_2}' = [0,k]$. Then if $\widetilde{\gamma_1}(\mathbf{t}) = \phi(\gamma_1(\mathbf{t}))$ and $\widetilde{\gamma_2}(\mathbf{s}) = \phi(\gamma_2(\mathbf{s}))$, we have $\widetilde{\gamma_1}'(0) = \phi_*([0,h]) = \widetilde{h}$ and similarly $\widetilde{\gamma_2}'(0) = \widetilde{k}$.

By definition

$$\langle \tilde{h}, \tilde{k} \rangle_{A} = \operatorname{Cov}_{\tilde{\theta}_{0}} \left[\left(\frac{d}{dt} \Big|_{t=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_{1}(t)) \right) \left(\frac{d}{ds} \Big|_{s=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_{2}(s)) \right) \right]$$

$$= \int_{RP^{p-1}} \left(\frac{d}{dt} \Big|_{t=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_{1}(t)) \right) \left(\frac{d}{ds} \Big|_{s=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_{2}(s)) \right) \tilde{f}(\tilde{x}, \tilde{\theta}_{0})$$

$$= 2 \int_{S_{+}^{p-1}} \left(\frac{d}{dt} \Big|_{t=0} \rho_{0} \left[(x^{t} \gamma_{1}(t))^{2} \right] \right) \left(\frac{d}{ds} \Big|_{s=0} \rho_{0} \left[(x^{t} \gamma_{2}(s))^{2} \right] \right) f_{0} \left[(x^{t} \theta_{0})^{2} \right]$$

$$= 4 \int_{S^{p-1}} \left(\rho'_{0} \left[(x^{t} \theta_{0})^{2} \right] [0, h] x \right) \left(\rho'_{0} \left[(x^{t} \theta_{0})^{2} \right] x^{t} [0, k]^{t} \right) f(x; \theta_{0})$$

$$= 4 \left[0, h \right] \operatorname{E}_{\theta_{0}} \left[\left(\rho'_{0} \left[(x^{t} \theta_{0})^{2} \right] \right)^{2} x x^{t} \right] \left[0, k \right]^{t}.$$

$$(4)$$

Here we have used (see Lemma 1 of Chang-Rivest)

$$E_{\tilde{\theta}_0} \left(\frac{d}{dt} \Big|_{t=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_1(t)) \right) = 0.$$
 (5)

Let $u = x^t \theta_0$ and write $E_{\theta_0}(xx^t \mid u) = u^2(\theta_0 \theta_0^t) + \frac{1-u^2}{p-1}(I - \theta_0 \theta_0^t)$. Thus (4) yields

$$<\tilde{h}, \tilde{k}>_{A} = \frac{4}{p-1} \int_{S^{p-1}} \left[\left(\rho'_{0}(u^{2}) \right)^{2} (1-u^{2}) f_{0}(u^{2}) \right] h^{t} k$$

and hence

$$c = \frac{4}{p-1} \int_{S^{p-1}} \left[\left(\rho'_0(u^2) \right)^2 (1-u^2) f_0(u^2) \right]. \tag{6}$$

Similarly, using again (5) and letting $g_0 = \log f_0$,

$$\langle \tilde{h}, \tilde{k} \rangle_{B} = E_{\tilde{\theta}_{0}} \left[\left(\frac{d}{dt} \Big|_{t=0} \log \tilde{f}(\tilde{x}, \tilde{\gamma}_{1}(t)) \right) \left(\frac{d}{ds} \Big|_{s=0} \tilde{\rho}(\tilde{x}, \tilde{\gamma}_{2}(s)) \right) \right]$$

$$= 2 \int_{S_{+}^{p-1}} \left(\frac{d}{dt} \Big|_{t=0} g_{0}[(x^{t} \gamma_{1}(t))^{2}] \right) \left(\frac{d}{ds} \Big|_{s=0} \rho_{0}[(x^{t} \gamma_{2}(s))^{2}] \right) f_{0}[(x^{t} \theta_{0})^{2}]$$

$$= 4 [0, h] E_{\theta_{0}} \left[g'_{0}[(x^{t} \theta_{0})^{2}] \rho'_{0}[(x^{t} \theta_{0})^{2}] xx^{t} \right] [0, k]^{t}.$$

Hence

$$d = \frac{4}{p-1} \int_{S^{p-1}} \left[g'_0(u^2) \rho'_0(u^2) (1-u^2) f_0(u^2) \right].$$

Estimating constants c and d

According to equation (6)

$$c = \frac{4}{p-1} \mathcal{E}_{S^{p-1}} \left[\left(\rho'_0((\mathbf{X}^t \theta)^2) \right)^2 (1 - (\mathbf{X}^t \theta)^2) \right].$$

It follows that if $\tilde{\mathbf{X}}_1, \dots, \tilde{\mathbf{X}}_n \in RP^{p-1}$ is a sample from a density \tilde{f} of the form $\tilde{f}(\phi(x); \phi(\theta)) = 2f_0[(x^t\theta)^2]$, then

$$\hat{c} = \frac{4}{n(p-1)} \sum_{i=1}^{n} \left[\left(\rho'_0((\mathbf{X}_i^t \hat{\theta})^2) \right)^2 (1 - (\mathbf{X}_i^t \hat{\theta})^2) \right]$$
 (7)

is a consistent estimator of c. Here $\mathbf{X}_1, \dots, \mathbf{X}_n \in \mathbf{S}_+^{\mathbf{p}-1}$ satisfy $\phi(\mathbf{X}_i) = \tilde{\mathbf{X}}_i$ and $\phi(\hat{\theta})$, with $\hat{\theta} \in S_+^{p-1}$, is the M-estimate defined by $\tilde{\rho}$.

To develop a sample estimate for d, we use equation (12) of Chang-Rivest.

$$\langle \tilde{h}, \tilde{k} \rangle_{B} = -E_{\tilde{\theta}_{0}} \left[\frac{\partial^{2}}{\partial t \partial s} \Big|_{(t,s)=(0,0)} \tilde{\rho}(\tilde{x}, \tilde{\gamma}(t,s)) \right]$$

$$= -2 \int_{S_{+}^{p-1}} \left[\frac{\partial^{2}}{\partial t \partial s} \Big|_{(t,s)=(0,0)} \tilde{\rho}(\tilde{x}, \tilde{\gamma}(t,s)) \right] f_{0}[(x^{t}\theta_{0})^{2}]$$

$$= -E_{\theta_{0}} \left[\frac{\partial^{2}}{\partial t \partial s} \Big|_{(t,s)=(0,0)} \rho(x, \gamma(t,s)) \right]$$

$$= -E_{\theta_{0}} \left[\frac{\partial^{2}}{\partial t \partial s} \Big|_{(t,s)=(0,0)} \rho_{0}[(x^{t}\gamma(t,s))^{2}] \right]$$

where $\tilde{\gamma}(t,s)$ satisfies $\tilde{\gamma}(t,0) = \tilde{\gamma}_1(t)$ and $\tilde{\gamma}(0,s) = \tilde{\gamma}_2(s)$.

Assume h has unit length, and let $\gamma_1(t) = \cos(t)\theta_0 + \sin(t)h$ and $\gamma(t,s) = \gamma_1(t+s)$. Then

$$\langle \tilde{h}, \tilde{h} \rangle_{B} = -E_{\theta_{0}} \left[\frac{\partial^{2}}{\partial t \partial s} \Big|_{(t,s)=(0,0)} \rho_{0} [(x^{t}(\cos(t+s)\theta_{0} + \sin(t+s)h))^{2}] \right]$$

$$= -E_{\theta_{0}} \left[4h^{t} \rho_{0}''(u^{2}) x x^{t} h - 2\rho_{0}'(u^{2}) u \right]$$

$$= -E_{\theta_{0}} h^{t} \left[4\rho_{0}''(u^{2}) x x^{t} - 2\rho_{0}'(u^{2}) u \right] h,$$

where we have used $h^t h = 1$. Thus, using $E_{\theta_0}(xx^t \mid u) = u^2(\theta_0\theta_0^t) + \frac{1-u^2}{p-1}(I - \theta_0\theta_0^t)$

$$<\tilde{h}, \tilde{h}>_B = -\mathbf{E}_{\theta_0} h^t \left[4\rho_0''(u^2) \frac{1-u^2}{p-1} - 2\rho_0'(u^2) u \right] h.$$

It follows

$$d = -E_{\theta_0} \left[\frac{4}{p-1} \rho_0''(u^2)(1-u^2) - 2\rho_0'(u^2)u \right]$$

and hence a consistent estimator for d is

$$\hat{d} = -\frac{1}{n} \sum_{i=1}^{n} \left[\frac{4}{p-1} \rho_0''((\mathbf{X}_i^t \hat{\theta})^2) (1 - (\mathbf{X}_i^t \hat{\theta})^2) - 2\rho_0'((\mathbf{X}_i^t \hat{\theta})^2) (\mathbf{X}_i^t \hat{\theta})^2 \right]. \tag{8}$$

Note that the estimates (7) and (8) do not require knowledge of the underlying density f_0 .