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Overview

Directional data analysis

I originally concerned with data on the circle (S1 ⊂ R2) and
sphere (S2 ⊂ R3).

I extended to more general spheres (Sp ⊂ Rq, p + 1 = q ≥ 2),
real and complex projective spaces, Stiefel manifolds,
Grassman manifolds, spaces of rotation matrices, shape
spaces, product spaces... .



Models

How to construct statistical models on such spaces?

I at one extreme should include the uniform distribution

I under high concentration should mimic the multivariate
normal distribution in a tangent space approximation about a
point

I typically based on exponential families

I inference often straightforward except for the normalizing
constant



Example — von Mises distribution on the circle S1.

In angular coordinates the density takes the form

f (θ) ∝ exp{κ cos(θ − α)} wrt dθ

where the angle α is a location parameter and κ ≥ 0 is a
concentration parameter. For κ = 0 the distribution is uniform; for
large κ,

θ − α ≈ N(0, 1/κ)

The density can also be written Euclidean coordinates. Let
x = (cos θ, sin θ)T and µ = κµ0, where µ0 = (cosα, sinα)T . Then

f (x) ∝ exp{xTµ} wrt uniform density,

Note the exponent is linear in x.



Figure of von Mises density
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von Mises-Fisher distribution on Sp

Recall Sp = {x ∈ Rq : xTx = 1} is the set of unit vectors in
q = p + 1 dimensions.

Let x denote a random direction on Sp and let µ = κµ0 where
µ0 ∈ Sp denotes a mean direction. In Euclidean coordinates with a
general mean direction, the von Mises-Fisher density becomes

f (x) ∝ exp{xTµ} wrt uniform density,

Note again the exponent is linear in x.

The use of a uniform base density avoids the need for messy polar
coordinates (e.g. sin θdθdφ on S2; θ = colatitude, φ = longitude).



Example — Bingham and FB distributions on Sp

In Euclidean coordinates with a q × q symmetric parameter matrix
A, the Bingham density is defined by

f (x) ∝ exp{−xTAx} wrt uniform density,

Note the density is symmetric (f (x) = f (−x)) and the exponent is
quadratic in x.

Note A and A + cI define the same distribution since cxT Ix = c is
constant for x ∈ Sp. It is convenient to choose c so that the
smallest eigenvalue of A equals 0.

We can combine the Fisher and Bingham distributions to get the
Fisher-Bingham distribution

f (x) ∝ exp{xTµ− xTAx} wrt uniform density,



Example — matrix Fisher distribution on SO(s)

The special orthogonal group of s × s rotation matrices is defined
by

SO(s) =
{

X ∈ Rs×s : det X = 1, XTX = Is
}
,

A natural distribution here (with parameter matrix F (s × s)) is the
matrix Fisher distribution,

f (X ) ∝
{

tr
(
FTX

)}
, X ∈ SO(s),

with respect to the underlying invariant “Haar” measure. It is
unimodal about a fixed rotation matrix determined by F .

There is a magical identity in differential geometry based on
quaternions, which states that the matrix Fisher distribution on
SO(3) can be identified with the Bingham distribution on S3.



Applications

For each distribution, here is a typical application and its limiting
distribution under high concentration.

I von Mises on S1. Vanishing angles of pigeons. Univariate
normal.

I Fisher on S2. Directions of magnetization in rocks. Isotropic
bivariate normal.

I Bingham on S2. Axes of bedding planes in rocks. General
bivariate normal (on axes).

I Fisher-Bingham on S2. Directions of magnetization in rocks.
General bivariate normal (in FB5 case).

I matrix Fisher on SO(3) (= Bingham on S3). Aligning objects
in 3 dimensions. General trivariate normal.



Concentrated Fisher distribution



Concentrated Bingham distribution



Concentrated Fisher-Bingham distribution



Concentrated matrix Fisher distribution



Inference issues

I To some extent inference is easy because these distributions
are exponential families (sometimes curved).

I However, the normalizing constant can be intractable for the
more complicated distributions in higher dimensions (though
saddlepoint approximations of Kume and Wood are a great
help in some situations, including the
Fisher-(and/or)-Bingham models considered here).

I In modern MCMC calculations in Bayesian models for which
directional distributions are a building block, simulation is
important.



Simulation

I Simulation methods have typically been developed on an ad
hoc basis.

I Efficient acceptance-rejection methods available for the
simpler distributions (especially von Mises-Fisher in any
dimension and Bingham on S2).

I Messier MCMC methods for the more complicated
distributions (e.g. due to Hoff, Habeck, Kume&Walker)

I Directional models have become a key ingredient in modern
Bayesian models, e.g. for protein structure simulation,
alignment problems.

I Hence a need for efficient AR simulation methods. We shall
focus on the Bingham distribution on Sp (including matrix
Fisher on SO(3)).



Desirable properties of a simulation method

As the parameter matrix A varies, the Bingham distribution ranges
from uniform to highly concentrated, including partially
concentrated versions inbetween.

We want a method of simulation that is reasonably efficient across
the whole parameter space.



Angular central Gaussian distribution

The first step is to find a good envelope for the Bingham density

f (x) ∝ exp{−xTAx}, x ∈ Sp.

We shall use the angular central Gaussian (ACG) density

g(x) ∝ (xT Σx)−q/2, x ∈ Sp

where Σ(q × q) is symmetric positive definite. Note Σ and cΣ
define the same distribution.

The ACG distribution can be easily simulated as follows:

if x ∼ Nq(0,Σ), then y = x/||x|| ∼ ACG(Σ).



Behavior of the Bingham distribution

Recall the Bingham distribution in R3 can be used to model data
concentrated about the north (and south) pole, say, with
ellipse-shaped variability about the pole. E.g., there may be more
variation along the Greenwich meridian (0o , 180o longitude) and
less in the perpendicular direction (90o and 270o longitude). It is
analogous to the bivariate normal distribution.

The ACG distribution has the same qualitative behavior, but with
longer tails. It is analogous to the bivariate Cauchy distribution.



The acceptance/rejection method of simulation — 1

I We want to simulate from a density f (x).

I We can simulate from a density g(x).

I We can find a bound f (x) ≤ Mg(x) for all x , where M ≥ 1.

I Then the A/R method enables us to simulate from f



The acceptance/rejection method of simulation — 2

(a) Simulate X ∼ g independently of W ∼ unif(0, 1).

(b) If W < Mf (X )/g(X ), then accept X .

(c) Otherwise go back to step (a).

The number of trials needed is geometric with mean M ≥ 1. The
efficiency is defined by 1/M. We want M to be as close to 1 as
possible.

If the normalizing constants for f and/or g are not known, then
the method can still be used, though the efficiency must be
computed by simulation.



The acceptance/rejection method of simulation — 3

That is, if
f (x) = cf f

∗(x), g(x) = cgg∗(x)

and
f ∗(x) ≤ M∗g∗(x)

where f ∗ and g∗ are known functions, and the bound M∗ is
known, but the normalizing constants cf and/or cg are not known,
then the A/R algorithm can still be used, with step (b) replaced by

(b∗) If W < M∗f ∗(X )/g∗(X ), then accept X .

However, the efficiency must be computed by simulation.



A key concave inequality

Since
φ(u) = log(1 + 2u/b), u ≥ 0,

is a concave function (0 < b < 2 is a tuning parameter) and
φ′(u) = 1/(b/2 + u) decreases from 2/b (> 1) to 0 as u ranges
from 0 to ∞, we can majorize φ(u) by a linear function with slope
1,

φ(u) ≤ ψ(u) = a + u,

where a depends on b and is chosen to make the two function
touch one another.



Figure showing majorization
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A/R for univariate Normal < Cauchy

Changing sign and exponentiating

log(1 + 2u/b) ≤ a + u

yields

e−u < ea 1

1 + 2u/b

Substituting u = 1
2x2 yields

exp(−1

2
x2) < ea 1

1 + x2/b
,

i.e. the normal density is bounded above by a multiple of the
Cauchy. Hence we can use A/R to simulate the normal using a
Cauchy envelope. (Note this is a toy example!)



Figure showing majorization
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Multivariate version

With a mild change, the same argument works for the multivariate
normal distribution, Np(µ,Σ), dominated by the multivariate
Cauchy distribution in Rp. The optimal value of b and the
efficiency can be computed analytically (and do not depend on the
mean µ or the covariance matrix Σ).

Efficiency: MVNp < MVCp

p 1 2 3 4 5 10 50 100
eff. 66% 52% 45% 40% 36% 26% 12% 9%

The efficiency is reasonable for small p but deteriorates if p is very
large.



A/R: Bingham < ACG

Represent the Bingham distribution on the unit sphere Sq−1 in Rq

using the version of the parameter matrix A for which the
eigenvalues satisfy λ1 ≥ · · · ≥ λq−1 ≥ λq = 0. Then substituting
u = xTAx in the modified concave inequality

e−u <
ea

{1 + 2u/b}q/2

yields

exp{−xTAx} ≤ ea

{1 + 2xTAx/b}q/2

=
ea

{xT Σx}q/2
, Σ = Iq + 2A/b.

That is the Bingham density is bounded above by a multiple of the
ACG density.



Efficiency: Bingham < ACG

In the directional case it is still possible to find the optimal value of
b. However, the efficiency of the algorithm must be computed by
simulation for each choice of parameters.

It turns out that the efficiencies for the Normal < Cauchy situation
are lower bounds for the efficiencies for the Bingham < ACG
situation.

There is a good reason for this result. Under high concentration,

Bingham ≈ MV Normal
ACG ≈ MV Cauchy.



Fisher-Bingham simulation

Bingham simulation methods can also be used for the Fisher and
Fisher-Bingham distributions. The key is the simple identity

0 ≤ (α− βµT
0 x)2

= α2 − 2αβµT
0 x + β2x(µ0µ

T
0 )x

for α, β > 0, which implies

2αβµT
0 x ≤ α2 − xTAx

where A = −β2µ0µ
T
0 .

Optimize efficiency over the choice of α and β such that 2αβ = κ.

The price is an (acceptable) loss in efficiency by a factor of about
2 (at least in the unimodal aligned case).



Summary of some manifolds

Sphere: Sp = {x ∈ Rq : xT x = 1}, p ≥ 1 — the unit vectors in
Rq, q = p + 1

Real projective space: RPp = Sp/{1,−1} — quotient space in
which two antipodal points or “directions” ±x are identified with
one another to represent the same “axis”

Special orthogonal group: SO(s) is the space of s × s rotation
matrices, SO(s) = {X ∈ Rs×s : XTX = Is , |X | = 1}.

Stiefel manifold: Vr ,s = {X1 ∈ Rs×r : XT
1 X1 = Ir} — space of

s × r column orthonormal matrices X1 (1 ≤ r ≤ s)

Grassmann manifold: Gr ,s — the set of all r -dimensional subspaces
of Rs



Summary of recommended methods

Distribution Space Simulation method

von Mises-Fisher Sp Wood 1987
Bingham Sp or RPp BACG
complex Bingham S2p+1 or CPp Kent et al. 2004
complex Bingham quartic S2p+1 or CPp ??
aligned Fisher-Bingham Sp BACG-based
general Fisher-Bingham Sp ” or MCMC
matrix Fisher Vr ,s or SO(s), s ≥ 4 MCMC
matrix Fisher SO(3) BACG
balanced matrix Bingham Vr ,s or Gr ,s BACG
general matrix Bingham Vr ,s MCMC
matrix Fisher-Bingham Vr ,s MCMC
similar product spaces MCMC



Conclusions

I The ACG distribution is a very effective envelope for the
Bingham distribution, almost regardless of dimension.

I This automatically gives a simple method to simulate the
matrix Fisher distribution on SO(3).

I Once it is possible to simulate from the Bingham distribution,
it is straightforward to give reasonably efficient methods to
simulate from the Fisher-Bingham distribution.

I However, the ACG approach is not a panacea! It does not
(yet?) work for similar types of distribution on more
complicated manifolds (e.g. Stiefel, Grassmann, product, ...).

I Since directional distributions are building blocks in more
sophisticated statistical models (usually analyzed by MCMC),
it is important to have efficient simulation methods.


