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Introduction

TWO-PARAMETER DISTRIBUTIONS

• von Mises distribution,
• cardioid distribution,

• wrapped Cauchy distribution,
• wrapped normal distribution.

These are unimodal models with two parameters, one controlling
location and the other concentration.

However these distributions do not allow for variations in skewness
and kurtosis.
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Fig. 1. Histogram of n = 711 wind directions
at Neuglobsow, Germany, measured hourly
between July 1 and 31, 2007.



Introduction Preliminaries A Family of Distributions on the Circle Conclusions & References

UNIMODAL FOUR-PARAMETER MODELS

• wrapped stable (Pewsey, 2008) • direct Batschelet (Abe et al., 2013)

• inverse Batschelet (Jones & Pewsey, 2012)

OUR GOAL

Our goal is to present a unimodal family on the circle which:

(i) has four parameters controlling location, concentration, skewness
and kurtosis,

(ii) has wide ranges of skewness and kurtosis,
(iii) includes a well-known two-parameter family as a special case,
(iv) is mathematically tractable.
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Preliminaries

WRAPPED CAUCHY DISTRIBUTION

Wrapped Cauchy distribution, WC(µ, ρ), is given by the density

f (θ) =
1

2π
1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, θ ∈ [−π, π); µ ∈ [−π, π), ρ ∈ [0,1).
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BASIC PROPERTIES

• unimodal and symmetric,
• µ: location parameter,
• ρ: concentration parameter.

Fig. 2. Density of wrapped Cauchy with µ = 0 and:
ρ = 0, 0.2, 0.4, and 0.6.
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Trigonometric Moments

Let Θ be a continuous r.v. on the circle with density f .
Then the k th trigonometric moment (t.m.) of Θ is defined by

φΘ(k) = E(eikΘ) =

∫ π

−π
eikθf (θ) dθ, k = 1,2, . . .

The cases k ≤ 0 can be obtained from φΘ(0) = 1, φΘ(k) = φΘ(−k).

T.M. OF THE WRAPPED CAUCHY

Let Θc ∼WC(µ, ρ). Then

φΘc (k) =
(
ρeiµ

)k
, k = 1,2, . . .

It is known that t.m.’s characterise probability distributions.
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An Extension of the Wrapped Cauchy

Wrapped Cauchy: φΘc (k) =
(
ρeiµ)k

, k = 1,2, . . .

AN EXTENSION

In this talk we propose an extension of the wrapped Cauchy via a
characterisation of its t.m.’s.

To achieve this, we first consider the t.m.’s

ψ̃Θ(k) = βeiα
(
ρeiη

)k
, k = 1,2, . . . ,

where the R-valued parameters, α, β, η, ρ, satisfy certain conditions.
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The Main Proposal

DEFINITION (Kato & Jones, revised)

We define a new family by the reparametrised version of ψ̃Θ:

ψΘ(k) = γ (ρeiλ)−1
{
ρei(µ+λ)

}k
, k = 1,2, . . . ,

where the R-valued parameters satisfy certain conditions.

Clearly, ψΘ reduces to the t.m. of the wrapped Cauchy if λ = 0 and
γ = ρ.
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Conditions on the Parameters

Our proposal: ψΘ(k) = γ (ρeiλ)−1 {ρei(µ+λ)
}k
, k = 1,2, . . .

Note that there does not always exist an absolutely continuous
distribution whose t.m.’s are equal to ψΘ.

THEOREM 1

There exists an absolutely continuous distribution on the circle whose
t.m.’s are ψΘ iff the parameters satisfy

−π ≤ µ, λ < π, 0 ≤ γ, ρ < 1,

(ρ cosλ− γ)2 + (ρ sinλ)2 ≤ (1− γ)2.
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Probability Density Function

THEOREM 2

Let Θ have the absolutely continuous distribution whose t.m.’s are
given by ψΘ.

Then the probability density function of Θ is a.e. equal to

g(θ) =
1

2π

{
1 + 2γ

cos(θ − µ)− ρ cosλ
1 + ρ2 − 2ρ cos(θ − µ− λ)

}
, −π ≤ θ < π, (1)

where the parameters satisfy the conditions given in Theorem 1.

Write Θ ∼ G(µ, γ, ρ, λ) if a r.v. Θ has density (1).
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SUMMARY MEASURES

Suppose Θ ∼ G(µ, γ, ρ, λ). Then

(i) mean direction µ1:

µ1 ≡ arg{E(eiΘ)} = µ,

(ii) mean resultant length γ1:

γ1 ≡ |E(eiΘ)| = γ,

(iii) circular kurtosis α2:

α2 ≡ E [cos{2(Θ− µ1)}] = γρ cosλ,

(iv) circular skewness β2:

β2 ≡ E [sin{2(Θ− µ1)}] = γρ sinλ.
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Reparametrisation

REPARAMETRISATION

Given the kurtosis and skewness of our model (1), it is advantageous
to reparametrise (ρ, λ) into (α2, β2) via

α2 = γρ cosλ and β2 = γρ sinλ.

Then the density of our model can be written in terms of four
parameters µ, γ, α2 and β2 as

g(θ) =
1

2π

[
1 +

2γ2{γ cos(θ − µ)− α2}
γ2 + α2

2 + β2
2 − 2γ{α2 cos(θ − µ) + β2 sin(θ − µ)}

]
,

−π ≤ θ < π. (2)

The parameter µ controls mean direction, γ mean resultant length,
α2 circular kurtosis, and β2 circular skewness.
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The conditions on the parameters of the reparametrised model (2) are:

−π ≤ µ < π, 0 ≤ γ < 1, (α2, β2) 6= (γ,0) and

(α2 − γ2)2 + β2
2 ≤ γ2(1− γ)2.

LEMMA 1

For fixed γ (= γ1):

(i) supρ,λ α2(ρ, λ) = γ,

minρ,λ α2(ρ, λ) = γ(2γ − 1),

(ii) maxρ,λ β2(ρ, λ) = γ(1− γ),

minρ,λ β2(ρ, λ) = −γ(1− γ).
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Fig. 3. Extent of circular kurtosis α2

and circular skewness β2 for γ = 0.3.
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Shapes of Density (2)

g(θ) =
1

2π

[
1 +

2γ2{γ cos(θ − µ)− α2}
γ2 + α2

2 + β2
2 − 2γ{α2 cos(θ − µ) + β2 sin(θ − µ)}

]
. (2)

THEOREM 3

(i) Density (2) is unimodal if γ > 0 and uniform if γ = 0.

(ii) Density (2) is symmetric ⇐⇒ β2 = 0.

(iii) The mode and antimode of density (2) with γ > 0 can be
expressed in closed form.
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Plot of Density (2)

g(θ) =
1

2π

[
1 +

2γ2{γ cos(θ − µ)− α2}
γ2 + α2

2 + β2
2 − 2γ{α2 cos(θ − µ) + β2 sin(θ − µ)}

]
. (2)
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Fig. 4. Density (2) for µ = 0 and:
(L) α2 = 0.4γ cos(π/4), β2 = 0.4γ sin(π/4), and γ = 0, 0.2, 0.4, 0.58;

(C) γ = 0.3, β2 = 0, and α2 = −0.12, 0, 0.12, 0.24;
(R) γ = 0.3, α2 = 0.09, and β2 = −0.21, 0, 0.165, 0.21.
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Submodels

Case 1: wrapped Cauchy distribution (α2 = γ2, β2 = 0)

Case 2: cardioid distribution (α2 = β2 = 0)

g(θ) =
1

2π
{1 + 2γ cos(θ − µ)} .

Case 3: The sine-skewed Cauchy distribution
(Umbach & Jammalamadaka, 2009; Abe & Pewsey, 2011)

(ρ = γ cosλ in the original parameterisation)

g(θ) =
{

1 + λ̌ sin(θ − µ)
} 1

2π
1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
,

where λ̌ = 2 sign(λ){γ2 − ρ2}1/2/(1− ρ2).



Introduction Preliminaries A Family of Distributions on the Circle Conclusions & References

Case 4: The three-parameter symmetric submodel (β2 = 0)

Case 5 (new): A three-parameter asymmetric submodel (α2 = γ2)

In addition, some other models such as a point distribution (γ → 1)
and circular uniform (γ = 0) are included as special cases.
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Fig. 5.
Domain of (α2, β2) (gray) with γ = 0.3.
Positions of submodels are:
WC: wrapped Cauchy,
C: cardioid,
—: 3-parameter symmetric,

—: 3-parameter asymmetric.
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Some Other Properties

The following can be derived using the original parameterisation.

THEOREM 4

(i) Θ1 ∼ G(µ1, γ1, ρ1, λ1), Θ2 ∼ G(µ2, γ2, ρ2, λ2), Θ1 ⊥ Θ2

=⇒ Θ1 + Θ2 ∼ G(µ1 + µ2, γ1γ2, ρ1ρ2, λ1 + λ2).

(ii) Θ ∼ G(µ, γ, ρ, λ)

=⇒ nΘ (mod 2π) ∼ G(nµ+ (n − 1)λ, γρn−1, ρn, λ), n ∈ N.

(iii) Θ ∼ G(µ, γ, ρ, λ) =⇒ −Θ ∼ G(−µ, γ, ρ,−λ).

THEOREM 5

γ ≤ ρ, λ = 0 =⇒ Distribution (1) is infinitely divisible.



Introduction Preliminaries A Family of Distributions on the Circle Conclusions & References

Parameter Estimation

Let Θ1, . . . ,Θn ∼ i .i .d . G(µ, γ, α2, β2).

METHOD OF MOMENTS ESTIMATION

Method of moments estimators based on the t.m.’s are

µ̂ = arg(S1n), γ̂ = |S1n|,

(α̂2, β̂2) =


(a2,b2), (a2,b2) ∈ Dγ̂ ,(
γ̂(1−γ̂)(a2−γ̂2)√

(a2−γ̂2)2+b2
2

+ γ̂2, γ̂(1−γ̂)b2√
(a2−γ̂2)2+b2

2

)
, (a2,b2) /∈ Dγ̂ ,

where S1n = n−1∑n
j=1 eiΘj ,

a2 = n−1∑
j cos{2(Θj − µ̂)}, b2 = n−1∑

j sin{2(Θj − µ̂)},
Dγ = {(x , y) ∈ R2 ; (x − γ2)2 + y2 ≤ γ2(1− γ)2}.
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Let Θ1, . . . ,Θn ∼ i .i .d . G(µ, γ, α2, β2).

MAXIMUM LIKELIHOOD ESTIMATION

The log-likelihood function for (θ1, . . . , θn) is

` = C +
n∑

j=1

log

[
1 +

2γ2{γ cos(θj − µ)− α2}
γ2 + α2

2 + β2
2 − 2γ{α2 cos(θj − µ) + β2 sin(θj − µ)}

]
.

• The maximum likelihood estimates of (µ, γ, α2, β2) should be
obtained numerically.

• Our simulation study suggests:
(i) method of moments estimates provide useful starting values,
(ii) maximum likelihood estimation is very fast.
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Comparison with Inverse Batschelet (IB) Distribution
A special case of the IB family (Jones & Pewsey, 2012):

gν(θ) ∝ f{tν(θ)}, −π ≤ θ < π,

where f : density of Jones & Pewsey’s (2005) 3-parameter symmetric family,
tν(θ) = t−1

1,ν (θ), t1,ν(θ) = θ − ν − ν cos θ.

COMMON PROPERTIES OF MODEL (1) AND IB

• unimodal family having 4 parameters with clear interpretation,
• tractable density, • inclusion of WC and cardioid.

MODEL (1) ONLY

• simple t.m.’s,
• fast parameter estimation.

IB ONLY

• inclusion of von Mises,
• parameter orthogonality.
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Conclusions

PROPERTIES OF THE PROPOSED MODEL

• unimodal density expressed in closed form,
• simple t.m.’s and summary measures,
• four parameters controlling location, concentration, kurtosis and

skewness,
• wide ranges of kurtosis and skewness,
• inclusion of wrapped Cauchy, cardioid, sine-skewed Cauchy,

3-parameter symmetric and asymmetric submodels, etc.,
• closure properties and infinite divisibility,
• fast parameter estimation.
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