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Introduction Outline

Aim

We review modeling strategies based on wrapped Gaussian processes
defined to model directional spatio-temporal data.
We compare the Wrapped Normal approach to Projected Normal
models in terms of computational efficiency/convenience.
We present a simulation study and some real data examples (marine
data)
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Introduction Wrapped distributions

We start in the univariate setting [4, 2]

Let Y be a real valued random variable on R,( linear random variable), with
probability density function g(y) and distribution function G (y).

The induced wrapped variable (X ) of period 2π, is given by X = Ymod 2π
and 0 ≤ X < 2π.

The associated circular probability density function f (x) is obtained by
wrapping g(y) via the transformation Y=X + 2Kπ around a circle of unit
radius:

f (x) =
∞∑

k=−∞

g(x + 2kπ), 0 ≤ x < 2π (1)

g(·) is the distribution of Y = X + 2Kπ, Y determines X and K through
the modulus operation, and X is a wrapped version of Y
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Introduction Wrapped distributions

The distribution for K is easily obtained:
P(K = k) =

∫ 2π
0 g(x + 2kπ)dx .

And K |X = x is such that
P(K = k |X = x) = g(x + 2kπ)/

∑∞
j=−∞ g(x + j2π)

And the conditional distribution of X |K = k is

g(x + 2kπ)/
∫ 2π

0 g(x + 2kπ)dx .

Hence, the wrapped distributions are easy to work with
treating K as a latent variable
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Spatial and spatio-temporal processes Wrapped Gaussian

Moving to the multivariate setting we obtain a multivariate wrapped
distribution for X = (X1,X2, ...,Xp) starting with a multivariate linear
distribution for Y = (Y1,Y2, ...,Yp) ∼ g(·) where g(·) is a p−variate
distribution on Rp, g is a family of distributions indexed by θ;

Let g(·) be a p−variate normal distribution. K = (K1,K2, ...,Kp) is such
that Y = X + 2πK. Then, the joint distribution of X and K is g(x + 2πk)
for 0 ≤ xj < 2π, j = 1, 2, ..., p and kj ∈ Z, j = 1, 2, ..., p. The marginal
distribution of X is, directly

+∞∑
k1=−∞

+∞∑
k2=−∞

...

+∞∑
kp=−∞

g(x + 2πk) (2)

Again we introduce latent Kj ’s to facilitate the model fitting.
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Spatial and spatio-temporal processes Wrapped Gaussian

X has a p-variate wrapped normal distribution (WN) when g(·;θ) is
a multivariate normal and θ = (µ,Σ).

Using standard results, the conditional distribution of Yj given {Yl , l 6= j}
and θ and the distribution of Xj ,Kj given {Xl ,Kl , l 6= j} and θ are
immediate. In [3] it is shown how to truncate the series when g(·) is
Gaussian based on distribution variability.
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Spatial and spatio-temporal processes Wrapped Gaussian

Introduce dependence in space and/or time it is easily achieved by
equipping the linear variable with a structured covariance function.

In general we can say that given a linear spatio-temporal Gaussian
process with: mean µY and covariance ΣY = σ2R ( R(φ) space-time
correlation function parametrized by φ),

it induces a Wrapped spatio-temporal Gaussian process

X ∼WN(µX , σ
2R(φ))
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Spatial and spatio-temporal processes Wrapped Gaussian

Spatial linear exponential correlation (solid) and its circular counterpart ρc (s, s′) = sinh(σ2ρ(s, s′))/sinh(σ2) (empty)
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Spatial and spatio-temporal processes Wrapped Gaussian

Which covariance/correlation

In what follows we consider a very general and flexible covariance function for the

linear variable:

Cor(h, u) =
1

(a|u|2α + 1)τ
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (h; u) ∈ Rd × R (3)

where ‖h‖ is the distance between two locations in space, |u| is the time lag, here

d = 2, a and c are non negative scaling parameters of time and space, respectively

and the smoothness parameters α and γ take values in (0, 1] and the space-time

interaction parameter β in [0, 1], while τ ≥ d/2 is here fixed to 1 following [1]
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Spatial and spatio-temporal processes Wrapped Gaussian

Model

We write the linear GP Y (s, t) = X (s, t) + 2πK (s, t) as:

Y (s, t) = µY (s, t) + ωY (s, t) + εY (s, t) (4)

µY (s, t) : mean function,

ωY (s, t): space-time GP with zero mean and covariance function
σ2(s, t)Cor(h, u), where Cor(h, u) is defined in (3)

εY (s, t) ∼ N(0, φ2
Y ) is an independent random error (nugget effect or

measurement error).
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Spatial and spatio-temporal processes Wrapped Gaussian

Model

We consider several situations with different complexity degree in
terms of mean and variance structure.

The simplest one has constant mean and variance

We adopt an ANOVA-type model for the mean and/or the variance
when an auxiliary information allows us to imagine that there exist n1

possible mean or variance levels

We adopt a regression structure for the mean when auxiliary
information is available (wave heights and directions). Hence here we
have to consider an appropriate link function connecting the linear
and the circular mean =⇒ 2atan1

1We use the atan definition of [2, page 13]
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Spatial and spatio-temporal processes Wrapped Gaussian

5 models

WN1: µY (s, t) = µY and σ2
Y (s, t) = σ2

Y ;

WN2: ANOVA parametrization for the mean and σ2
Y (s, t) = σ2

Y ;

WN3: µY (s, t) = µY and ANOVA parametrization for the variance;

WN4: atan link for the mean and σ2
Y (s, t) = σ2

Y ;

WN5: atan link for the mean and ANOVA parametrization for the
variance.
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Spatial and spatio-temporal processes Wrapped Gaussian

Priors

We suggest the following choices:

covariance: a ∼ Gamma(aa, ba), c ∼ Gamma(ac , bc),
α ∼ Beta(ν1,α, ν2,α), β ∼ Beta(ν1β, ν2,β), γ ∼ Beta(ν1γ , ν2,γ),

process: σ2
Y ∼ InGamma(aσ, bσ), σ2

Y ,i ∼ InGamma(aσi , bσi ),

φ2
Y ∼ InGamma(aε, bε),

the mean: Wrapped Gaussian
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Spatial and spatio-temporal processes Projected Normal model

Our benchmark: the spatio-temporal Projected Gaussian process, defined
by [7].

Let Z = (Z1,Z2) be bivariate Gaussian with mean µZ = (µZ ,1, µZ ,2) and
covariance matrix (

σ2
Z ,1 σZ ,1σZ ,2ρz

σZ ,1σZ ,2ρz σ2
Z ,2

)
We transform Z into an angular variable, Θ, with the transformation
Θ = atanZ2

Z1

Θ is distributed as a Projected Normal variable [4, pag. 52] with parameters
µZ ,1, µZ ,2, σ

2
Z ,1, σ

2
Z ,2, ρz .

[6] note that the distribution of Θ is invariant if we multiply Z by a positive
constant

an identification constraint is required and the authors suggestion is:
σ2
Z ,2 = 1

V =

(
σ2
Z ,1 σZ ,1ρz

σZ ,2ρz 1

)
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Spatial and spatio-temporal processes Projected Normal model

Working with the Projected Normal distribution is analytically not ”easy”

It is convenient to introduce a latent variable R = ||Z|| and work with the
joint density of (Θ,R)

(2π)−1|V|− 1
2 exp

(
− (r(cos θ, sin θ)′ − µZ )′V−1(r(cos θ, sin θ)′ − µZ )

2

)
r

We can move back and forth between the linear variables and (Θ,R) using
Z1 = R cos Θ, Z2 = R sin Θ and the atan transformation.
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Spatial and spatio-temporal processes Projected Normal model

Let Z(s, t) = (Z1(s, t),Z2(s, t)) be a 2-dimensional space-time
process with constant mean µZ and cross covariance function
Cθ ((s, t), (s′, t ′))

The circular process Θ(s, t) induced by Z(s, t) with the atan
transformation is a projected Gaussian process with mean µZ and
covariance function ΣZ (see [5] for details).

As before the latent variable R(s, t) is introduced to facilitate model
fitting.
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Spatial and spatio-temporal processes Projected Normal model

Model details

We define, for each s, t the 2-dimensional linear process:

Z1(s, t) = µZ ,1 + ωZ ,1(s, t) + ε̃Z ,1(s, t)
Z2(s, t) = µZ ,2 + ωZ ,2(s, t) + ε̃Z ,2(s, t)

where µZ = (µZ ,1, µZ ,2) is the mean,
ωZ (s, t) = (ωZ ,1(s, t), ωZ ,2(s, t)) is a bivariate Gaussian process with
zero mean and covariance function V ⊗ Cor(h, v)

Cor(h, v) is the Gneiting correlation introduced before

ε̃Z (s, t) is a bivariate error with zero mean and covariance matrix φ2
Z I.
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Spatial and spatio-temporal processes Projected Normal model

Model details

We marginalized over ωZ (s, t) above:

Z1(s, t) = µZ ,1 + εZ ,1(s, t)
Z2(s, t) = µZ ,2 + εZ ,2(s, t)

Now εZ (s, t) is a bivariate Gaussian process with zero mean and covariance
function V ⊗ Cor(h, v) + I4φ

2
Z

Then Θ = atanZ1(s,t)
Z2(s,t) is a circular process with constant mean µZ , a nugget

(measurement error) and, as in the WN setting, correlation between the
circular variable induced by the Gneiting spatio-temporal correlation
function. (PN1)

A model without nugget is readily obtained by removing ε̃Z in the previous
expression (PN2)

Priors: Gaussian with large variance for µZ ,i , i = 1, 2,
ρZ ∼ N(µρ, σρ)I (−1, 1), φ2

Z ∼ InvGamma, for the correlation parameters
the same priors as in the WN
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Prediction

Wrapped Normal

To perform prediction with a space-time wrapped GP we need to sum
over the set of winding numbers K and this is unfeasible even with a
problem of small dimensions.

However if (s0, t0) is a new point in Rd × R and we want to asses
information on X (s0, t0) within the Bayesian modeling framework, we
seek the average of the conditional distribution of X (s0, t0) given the
observed values.

Fitting the space-time wrapped Gaussian process will yield posterior
samples of parameters of the model.

Then we can compute Monte Carlo approximations of the desired
mean.
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Prediction

Projected Normal

Predictive distribution available

Given (s0, t0) we can infer about the circular mean and the
concentration at the unobserved spatio-temporal location using
posterior samples of the parameters and the latent R.

At each iteration of the McMC we draw a sample z(s0, t0)b from the
distribution of Z(s0, t0)|Θ,Rb,Ψb

Z and then we convert it to the
associated circular process.

Recall that the circular mean is atan
(

E cos Θ
E sin Θ

)
and the concentration

is
√

E cos2 Θ + E sin2 Θ then we can compute them using their
McMC approximation
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Computational issues Simulation examples

Implementation

We need several computational “tricks” to speed up convergence and
ensure identifiably

block sample nugget and variance

Adaptive metropolis

Large matrices to be inverted → O(n3) operations
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Computational issues Simulation examples

Simulation scheme

Parameters in common to all dataset:

20 locations and 12 time points.

coordinates uniformly generated in [0, 10]× [0, 10].

170 points between the 1th and 10th time are used for model
estimation, the remaining 70 for model validation.

Correlation parameters:

(a, c) = {(0.2, 1); (1, 0.2)}.
β = {0; 0.5; 0.9}.
α = {0.5; 0.8}.
γ = {0.5; 0.8}.
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Computational issues Simulation examples

Simulation scheme

Wrapped Models parameters:

φ2
Y = (0.01, 0.1) nugget.

constant σ2
Y : (σ2

Y , φ
2
Y ) = (= 0.1, 0.01) and (σ2

Y , φ
2
Y ) = (0.5, 0.1)

(WN1,WN2,WN4).

constant mean: µY = π (WN1,WN3).

ANOVA - type mean: 3 possible values for each (s, t) with probability 1/3,
(1, π, 5) (WN2).

ANOVA-type σ2
Y (s, t): 3 values for the variance: (0.1, 0.5, 1) again with

probability 1/3(WN3,WN5).

Regression function for the mean: π + 0.5 ∗ U(s, t) with
U(s, t) ∼ Unif (−10, 10)
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Computational issues Simulation examples

Simulation scheme

Projected models parameters:

We simulate with two sets of parameters for the PN1:

(µZ ,1, µZ ,2, σ
2
Z ,1, ρZ , φ

2
Z ) = (2, 2.5, 1, 0.2, 0.01).

(µZ ,1, µZ ,2, σ
2
Z ,1, ρZ , φ

2
Z ) = (1.2, 1.2, 1, 0.2, 0.1).

In the model PN2 we used the same parameters of the model PN1 excluding
φ2
Z

Note that:

We simulate unimodal and slightly asymmetric projected Normal distribution

We consider parameters combinations that induce circular variances of the
same order of magnitude as in the WN simulations, i.e. “small” and “large”
variance
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Computational issues Simulation examples

To asses model performance we compute an average prediction
error (APE), defined as the average circular distance2 between a
validation dataset and model predicted values.

All runs are implemented on a large computers cluster the Bari INFN
high performance Grid computing infrastructure Bc2S 3, about 250
computing knots (4000 CPU cores) and it allows data management
and storage on a 1650 TB shared hard disk.

2We adopt as circular distance, d(α, β) = 1 − cos(α− β) as suggested in
Jammalamadaka and SenGupta (2001, p.16).

3Bari Computer Center for Science
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Computational issues Simulation examples
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Computational issues Simulation examples

Computational efficiency

Model Average Iterations Average Time

PN 1 700000 28h
PN 2 700000 10h

WN 1:3 150000 2h
WN 4:5 300000 4h
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Computational issues Simulation examples

WN vs PN
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Computational issues Real Data

Outputs from a deterministic model implemented by ISPRA4. The
model starts from a wind forecast model predicting the surface wind
over the entire Mediterranean. The hourly evolution of sea wave
spectra is obtained solving energy transport equations using as input
the wind forecast. Wave spectra are locally modified using a source
function describing the wind energy, the energy redistribution due to
nonlinear wave interactions, and energy dissipation due to wave
fracture.

It produces several waves parameters, here we consider significant
wave height and direction.

It is affected by a large uncertainty, spatial resolution is 0.1 degree
longitude about 12.5× 12.5km cells, time resolution is 1hour.

4Istituto Superiore per la Protezione e la Ricerca Ambientale
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Computational issues Real Data

We choose two datasets:
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Computational issues Real Data

Both datasets cover the period between the 00:00 of May 5, 2010 and the
18:00 of May 7, 2010.

We select values every 6 hours.

The association between wave height and direction is used as auxiliary
information for both the regression and the ANOVA-type models. In the
latter we define 3 groups wave height ≤ 1m, (1, 2]m, > 2m.

Dataset1:

North-West area of the Adriatic sea.

20 spatial points.

170 points between the 5th 00:00 and the 7th 06:0 are used for model
estimates, the remaining 70 for model validation.

Dataset2:

The entire Adriatic sea.

50 spatial points.

425 points between the 00:00 May 5, 2010 and the 06:00 of May 7,2010 are
used for model estimation, the remaining 175 points for model validation.
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Computational issues Real Data

Parameters estimates

Nuggets estimates are the same up to the 3rd figure in WN1 and PN1
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Computational issues Real Data

APE

Dataset 1 Dataset 2
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Computational issues Real Data

Given the parameters estimates and the APE we’d choose the PN1 for both

datasets model but both datasets can be reasonably handled using WN1
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Concluding Remarks

Pros and Cons

Efficiency, both computational and statistical, depends on the process
variance for both models

The Wrapped Normal is a computationally very convenient model
when reasonably symmetric and unimodal data are available

The WN can reasonably approximate the PN

In the WN model no full Bayesian inference for the space-time
process.

The Projected normal model can handle multimodal situations and
d > 2 and full Bayeian inference is possible.

The PN model parameters are not easily interpreted.
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Concluding Remarks

Coming soon:

More simulations to compare WN and PN when data are multimodal

HMM using projected normals

An R package implementing the proposed models

Wrapped point processes (?)
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Essential References

Thanks for your attention
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