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The protein folding problem

Central problem in science
• Biology, physics....and statistics
• Biotechnology

• Enzyme design, new chemistry
• New materials (f.ex. spider silk)

• Medicine
• Drugs, vaccines

Proteins are linear polymers of amino acids
• 20 different amino acids
• Hydrophobic amino acids on the inside
• Hydrophylic amino acids on the outside

Sequence encodes a compact 3D shape
• Protein fold

Predicting structure from sequence
• One of the main open problems in biology
• Our goal is to formulate a probabilistic model of protein

structure, and apply it to inference, prediction and design
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How can we formulate a probabilistic model
of protein structure?

Local structure
• Shape of the protein on a local length scale

• Helices, strands, coils...
• Can we develop an efficient local model that allows sampling?

Nonlocal structure
• Interactions between residues far apart in sequence
• Which model and how to combine it with the local model?
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Parameterization of a protein's structure

One amino acid=3 points
• N, Cα and C atoms
• We assume ideal bond distances and angles
• We leave out the side chains for now

Parameterization?
• Sequence of n-2... 

– Dihedral angle pairs (φ,ψ)
– Angles in [-π, π)

– Points on the torus T2
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A probabilistic model of local structure

Goal: a probabilistic model for backbone angles
• Generative (allows sampling), continuous
• Sequence, angles, secondary structure 

Two problems:
• Angles: Directional statistics 

• Bivariate von Mises distribution on the torus
• (Mardia, Taylor & Subramaniam, 2007)

• Sequential nature: dynamic Bayesian network (DBN)
• Hierarchical model, essentially a hidden Markov model
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TORUSDBN: a model of local structure

Dynamic Bayesian network for local protein structure 
• (Boomsma et al., PNAS, 2008)
• Probabilistic model with a graph representation

• Nodes are variables, edges encode independencies 
• Amino acid symbols (A)
• Secondary structure labels (S)

– Angle pairs φ,ψ of the amino acids (X)
– Points on the 2D torus

• Markov chain of hidden nodes (H)
• Nuisance variable, statistical magic

• Trained using 1500 proteins

P A,S,X =∑
H

P A∣H P  S∣H P X∣H P H 
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Example I: Ramachandran plot

50K samples, protein test set versus TORUSDBN
Lengths of secondary structures are also reproduced

Test set TORUSDBN
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Example II: Sampling motifs

Sampling motifs (α-turn-β and β-turn-β)

Test set TORUSDBN
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BASILISK: A model of side chain structure

TORUSDBN does not include the side chains
Side chains are also parametrized using dihedral angles (chi, χ)

• Again, assuming ideal bond angles and lengths
• From zero to four angles

BASILISK complements TORUSDBN
• (Harder et al., BMC Bioinformatics, 2010)

 

Glutamate
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BASILISK: probabilistic model for side chains

A dynamic Bayesian network that represents side chains
• All relevant amino acids in one model (transfer learning)
• Generative, continuous
• Includes the backbone angles
• (Harder et al., BMC Bioinformatics, 2010)
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A probabilistic model in atomic detail, but...

TORUSDBN and BASILISK constitute the first probabilistic
model of protein structure with atomic detail
• Hurray, the problem is solved, and we can go to the beach?

Problem: this model works on a local length scale
• We used a Markov chain of hidden nodes
• Nonlocal features are missing: hydrophobic effect, long range

hydrogen bonding, electrostatic interactions...
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Towards a complete model of protein structure

Augment TORUSDBN, p(x|L), with nonlocal information
• Add a probability distribution on some nonlocal feature vector e

• e=f(x)
• For example, radius of gyration

• Can be done with the reference ratio method (PLoS ONE, 2010)
• Used for 20 years in protein structure prediction as potentials of

mean force, without having a clue why it works

p (e∣L , N ) p (x∣L)p (e∣L)

p (x∣L , N )=
p(e∣L , N )
p(e∣L)

× p(x∣L)
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Proof of reference ratio method
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Probability kinematics, Jeffrey's conditioning 

Introduced by Richard C. Jeffrey in the 50ies
• Philosopher of probability, Princeton
• (“The logic of decision”, 1965)
• (Diaconis & Zabell, JASA, 1982)

Of general interest for multi-scale problems
• Reference ratio method

• Estimate local model
• Estimate nonlocal model from local model
• Estimate nonlocal model from data
• Glue everything together with PK
• Explains “potentials of mean force”

• (Hamelryck et al., PLoS ONE, 2010)
• Speech signals, images, movements,...
• Azzalini's skew distributions

Richard C. Jeffrey
(1926-2002)

p ( x∣L ,N )=
p (e∣L ,N )
p (e∣L )

× p (x∣L )



ADISTA, 2014
Slide 15

Bioinformatics Center

An energy vector provides nonlocal information

Radius is not enough; we need more detail
An energy vector describes global structure
• p(e|a) is a simple multivariate Gaussian
• Inferred for a given sequence a
• PROFASI force field

Five energies
• Electrostatic interactions e1

• Hydrophobic interactions e2

• Hydrogen bonds e3-5

• Helices, sheets, other cases
• Information on secondary structure

p ( x∣a , L , N )=
p (e∣a , L , N )
p (e∣a , L )

× p ( x∣a , L )

with e= f (x) e={e1 ,... , e5 }
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Proof-of-concept: Results for Top7

Proof-of-concept (Valentin et al., Proteins, 2013)
• Energy vector from native structure (noisy)

Tested and works for four proteins, up to 60 residues
• Prediction=centroid of largest cluster
• Note: PROFASI does not fold these proteins correctly
• Can handle disordered regions

PredictionNative

www.phaistos.org
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Conclusions & acknowledgments

Probabilistic model of protein structure
• Local model: graphical models, directional statistics
• Nonlocal information using probability kinematics
• Powerful, general approach to multi-scale problems

Acknowledgments
• Wouter Boomsma (TORUSDBN, PHAISTOS, CRISP)
• Jan Valentin (reference ratio de novo prediction)
• Sandro Bottaro (CRISP local move)
• Jes Frellsen (MUNINN, reference ratio)
• Simon Olsson (TYPHON, ensembles)
• Tim Harder (BASILISK, TYPHON)
• Pengfei Tian (PROFASI implementation)

Collaborators
• Kanti Mardia, John T. Kent, Leeds, UK
• Jesper Ferkinghoff-Borg, DTU, Denmark

http://www.binf.ku.dk
PhD position (deadline 15/06)
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Bivariate von Mises distribution

Mardia, Taylor & Subramaniam, (2007) Protein
bioinformatics and mixtures of bivariate von Mises
distributions for angular data. Biometrics 63:505–512
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Example: lysine and arginine

Lysine and arginine have large side chains
• 4 χ angles, plus two backbone angles
• Challenging to capture in a probabilistic model
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Example: leucine

The joint probability distributions are also well captured
• Leucine: two χ angles
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Backbone dependence

The side chain depends strongly on the backbone
• This is well captured by Basilisk
• Discretization implies an explosion of parameters

Glutamate
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Probability kinematics II

(Diaconis & Zabell, JASA, 1982)
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Some features of the method

• Statistically well defined
• Pretty fast: under 5 days on 1 quad core CPU
• Link to physics

• Better force fields means better performance

• Convergence can be easily evaluated
• Secondary structure can be explored freely
• Statistical uncertainty can be assessed
• Can handle disordered regions
• Unified approach to de novo and homology modelling

• Protein design

• Open source implemented in PHAISTOS
• (Boomsma et al., J. Chem. Theory Comput., 2013)
• C++, available from sourceforge
 

http://www.phaistos.org
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Probability kinematics, Jeffrey's conditioning 

Introduced by Richard C. Jeffrey in the 50ies
• Philosopher of probability, Princeton
• (“The logic of decision”, 1965)
• (Diaconis & Zabell, JASA, 1982)

We have Q(X)=Q(X,r)=Q(X|r)Q(r)
• Note that r is a deterministic function of X
• The model Q(X) is incorrect on a global scale
• That is, Q(X|r) is correct, but Q(r) is wrong

We want P(X)=P(X,r)=Q(X|r)P(r)
• P(r) is given and correct 
• Problem: we have Q(r), Q(X), P(r) but not Q(X|r)

Solution is given by probability kinematics
• Follows from Q(X|r)=Q(X)/Q(r)
• Explains “potentials of mean force”

• (Hamelryck et al., PLoS ONE, 2010)

Of general interest for multi-scale problems
• Speech signals, images, movements,...
• Azzalini's skew distributions

Richard C. Jeffrey
(1926-2002)

P X = P r 
Q r 

×Q X 
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Towards a complete model of protein structure

Augment TORUSDBN+BASILISK with nonlocal information
• Add a probability distribution on nonlocal features

• For example, radius of gyration
• Can be done with the reference ratio method (PLoS ONE, 2010)
• Used for 20 years in protein structure prediction as potentials of

mean force, without having a clue why it works
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Proof of reference ratio method bis

Thanks to Douglas Theobald, last Tuesday!

Since e=f(x), we know for the nonlocal model 

Similarly, for the local model

Thus, the Jakobian is

Putting the Jakobian (2) in (1), results in

p (x∣L , N )= p(e∣L , N ) d ed x

p (x∣L)= p(e∣L) d ed x

d e
d x=

p (x∣L)
p (e∣L)

p (x∣L , N )=
p(e∣L , N )
p(e∣L)

× p(x∣L)

(1)

(2)
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