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Outline of the Talk

Some basics of directional data

Briefly, wrapped normal distributions and wrapped
(Gaussian processes

Projected normal distributions and projected Gaussian
processes in space and space-time

Examples
Spatial analysis of a directional and linear variable

New work: Angular discrepancy processes; aspect
processes; spatial point patterns on a circle



Directional data

Directional, circular, angular data (here, in 2
dimensions)

Applications include:

s meteorology (wind direction)

s oceanography (wave direction, different from wind
direction)

s ecology (animal movement)

s periodic data, say daily or weekly, “wrap” it to be
circular (time of max ozone level, time and day of a
particular type of crime), convert to [0, 2r)

Some of these applications can be spatial - wind, wave
directions

Can have a linear variable as well - ozone level, wave
height

Can be dynamic



Here, exclusively a Bayesian view

® Inference on population features, inference on
prediction in space and time (kriging)

® Model fitting through MCMC; posterior sampling
(analogue of resampling techniques for
likelihood-based inference (Pewsey et al., 2013))

® Fitting is easy through introduction of latent variables

® Limited Bayesian literature

» Damien and Walker (1998) Von Mises distribution
s Ghosh et al. (2003) One and two sample problems

s Nunez-Antonio and Gutierrez-Pena (2005a,b, 2011)
Von Mises, wrapped distribution, projected normal
s Ravindran (2002) Thesis on wrapped distributions

s Coles (1998) Multivariate circular data; Casson and
Coles (1998) von Mises with spatial dependence in
location and scale parameters



Intrinsic Approach

von Mises distribution M (., k), density

1
2mly(K)

Kk cos(f—p)

f({—?;_ [, K) =

€

where ;1 i1s mean direction, « is concentration, and [
modified Bessel function of the first kind of order 0.

Most common circular distribution. Circular analogue of
normal distribution for linear data

symmetric, unimodal; mixture models to add flexibility
Infeasible for multivariate angular data

® For spatial or temporal or space-time data, conditionally

iIndependent von Mises with process models at second
stage for i, k. May be unattractive.



Wrapping

® Wrap alinear variable, i.e., 8 = Ymod2r

® If ¢(y) is a density on R!, wrapped density looks like

o0

f0)=>" g(0+27k)

k=—00

Regression - again, a link function to the circle
Obviously, can rescale from [0, L) to [0, 27)

Multivariate version (say p-dim) is easy. With
multivariate density ¢ on 17,

Convenient choice is a multivariate normal



The univariate wrapped normal
W N (p, 0%) density takes the form, for 0 < 8 < 27

(0 + 2km — 1n)?
Z 9(0+2km) = — \/_ Z )

E(Z) = o*/2¢it 50 1 is the linear mean with
=L+ 231}1 with i € [0, 27) the mean direction and

— e 7 '/2 IS concentration

o

0 is observed; # + 2K« is the linear variable; K is latent
Joint density for# and K is f(0,k) = g(0 + 2km) =

1 (6 + 2km — p)?
expl— ,
oV 2T Pl 202

Removes the doubly infinite sum; suggests adding K as
a latent variable

), 0<6<2m K e{0,+1,+2, ...



Wrapped Gaussian Processes

Recall the multivariate wrapped distribution:

Here 6 is observed vector, 8 + 27K is the linear vector,
K is the latent vector

Again, the joint density for (6. K) Is:
f(6,K) = g(0 + 27k)

Since GP’s are specifies through their finite dimensional
distributions, we can induce a wrapped GP from a linear
GP. In particular, If linear GP has covariance function

o?p(s — s'; 0), then

0 = (0(s1).0(s2). ... 0(s)) ~ WN (1,02 R(9))



Projection Approach

® An embedding approach - unit circle within 12

® U= (U, Us) ~ g(u1,uz), a density on R?

Then (V1,V5) = (II%II 0 II) where ||U|| is the length of

U, is a point on the unit circle, associated angle is
§ = atan2y = atan2?

In fact, Uy = Rcos#H and Us = Rsind, R latent

R =||U||, Vi =cosf, Vo = sind

Again, angular mean direction IS

gsing
atan2 5555 = E 7£ E Ll

Concentration is ||E(V|| <1




Projection cont.

Projected normal distribution. Suppose the random
vector U ~ No(u, X)), then 0 ~ PNo(p.Y).

More flexible - can be asymmetric, bimodal

Easy for regression - linear model in covariates for p -
but may be hard to interpret, a regression for each
component

A nice characterization: The collection of mixtures of
projected normals is dense in the class of all circular
distributions

Difficult to work with for dim >2.



Projected normal

Back to projected normal

® Recall, if U= (Uy,Us) ~ g(u1,us), a density on R?
® Then (%, Y2y where ||U|| is the length of U, is a point

U] 1101l
on the unit circle, associated angle is 6§ = atan2%{

Projected normal distribution. Suppose the random
vector U ~ No(u, ), then 8 ~ PNa(pu, X).

The density can be obtained explicitly but is very messy.

Instead, we would use polar coordinates working with
the joint density of (A, R) derived as a transformation
from (U, Us), treating R as a latent variable

f(r,0lp, ) = (2m) 7S] 72 exp (— ml_”}sz_l(m_“'J) r



By transforming the bivariate random vector x = (x1, x2) into
polar co-coordinates (r, ) and integrating over r for a given 6, the
density function for 8 , f(6; p1, 2,01, 02, p) is obtained as,

B(s, 12: 0, E) + aD(0)®{D(6)}6 [a{C(6)} % (1 sin 0 — 2 cos 0)]

f(0) = 0
where
a = {omo2/1-p?}""
C(8) = a’(o3cos’ B — poioasin2f + o7 sin” 0)
D(#) = aE{C(H]}_%{ng{ag cosf) — poysinf) + pooi(o1sinf — pos cos )}

Y — UJE. PT102
\ poio o3 '



cont.

What do projected normal densities look like?

The form with general ¥ has only been considered
theoretically; data analysis and inference has only been
considered so far for the case X = I.

In this latter case, the PN densities are symmetric,
unimodal (and the uniform arises when p; = o = 0).

When ¥ = I, the mean direction i = atanzij—;, closed
form for p (Kendall, 1974).
In this case, the PN can be compared with the von

Mises. Both have two parameters and can line up their
directions and resultants.



cont.

We work with the more general X case

Can draw pictures of the density in terms of five
parameters in pn and . We can achieve asymmetry
and bimodality

With regard to inference, an identifiability issue: Note
that if we scale U by a, the distribution of # doesn’t
change

72 pT
We simply set ¥ =
pr 1
We have a four parameter model

No simple form for ;. or ¢ now; ugly functions of the four
parameters but we can compute them numerically

So, no role for the usual EDA ideas here
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Figure 2. Density of 0 for 1y = ps = 0, 01 = 09 = o and different values of p



(a) Asymmetry (b) Antipodality (c) Bimodality

Figure 3. Shape of the general projected normal distribution



Model fitting and inference

Bayesian model fitting is straightforward. With observed
#;’s and latent R;’s, we convert to Uj;’s and Us;’s.
Update 3’s and 72 and p under a standard bivariate
(Gaussian setup.

The R;’s have an explicit closed form full conditional
(M-H step with Gamma proposal)

When ¥ £ I, we achieve better out-of-sample prediction
using the correct model rather than the incorrect model

Comparing an observed hold-out # with an estimate of
Its mean direction is not sensible with bimodal densities

With holdout, we use a predictive log likelihood loss

(PLSL) and the cumulative rank probability score
(CRPS; Grimit et al., 2006)
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Figure 4. disjoint HPD sets for bimodal predictive distribution



Figure:

Density estimation, n=50
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Density estimation, n=50
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Density estimation, n=50
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Comparing 2 vs. |




Example: Real angles

Figure: Orientations of 76 turtles after laying eggs (Gould's data cited by
Stephens, 1969)



Real Data Example

The raw data are the directions in which 76
female turtles moved after laying their eggs
on a beach. (Gould’s data)

—— projected normal
—— displaced normal
— von Mises




Spatial PN models

Finally, we return to the case of {6(s;),: = 1,2,...,n}

In the independence case, we had latent independent
U,’s modeled as bivariate normal

Now, we assume latent U(s;) from a bivariate Gaussian
process

This induces a spatial process for the 6(s;) which we
call the Projected Normal GP

Many ways to specify the bivariate GP; separable
cross-covariance function

Kriging is, again, straightforward. We can krige
posterior predictive samples of say U(sp) which, in turn
iInduce posterior predictive samples of 4(s;)

We can easily insert spatial regressors, X (s) in the
1t(s), analogous to the independence case.



Model fitting

From the joint distribution of {U(s;)} can write the joint
distribution of {6(s;),r(si)}.

S0, now need to update r(s;)|“everything else”. But
same idea as before; now the conditional distribution of
U(s;)|“everything else” is a conditional normal so again,
an explicit form for the full conditional for »(s;).

® Start with separable cross covariance functions for U(s)

® From the separable cross covariance function, we can

explore the induced covariance function for é(s)

p is stationary in U(s) process, joint dist for (6(s).#(s"))
will depend on s — s’ but no implied form for correlation.

General form proposed in Jammalamadaka and Sarma.
Not likely to be a valid correlation function



Circular correlation

e Jammalamadaka and Sarma (1988) proposed a measure of
circular correlation as

E{sin(ax — p)sin(f —v)}
/Var(sin(a — p))Var(sin(8 — v))
@ It is difficult to obtain an explicit form for p. under projected

normal process model. However, we can approximate this
quantity using Monte Carlo intergration.

pela, B) =

(1)

@ Fisher's definition of circular correlation coefficient doesn't
apply in the spatial setting.



Some joint distributions

C(s,-s,)=0, p,=-0.32, =0, 1=0.48, p=-0.62
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Two joint distributions from separable
correlation function with same cross correlation

C(s,=5,)=0.4, u, =1, 1,=0, =1, p=0.4 C(s,-5,)=0.4, ,=-0.32, =0, 1=0.48, p=-0.62
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Figure 3. Bivariate joint distribution of ©(s) and ©(s') of three different marginals (rows) and
three different levels of spatial dependence (columns). Explicit values of the parameters are pro-
vided in the text
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Italian wave direction data

Available Data Sources:

- WAM (WAve Model) data in deep water on a
grid (25 x 25 km cells)

- RON (Rete Ondamerica Nazionale - National
Wave-measure Network) data

Data of Interest:
- Wave Heights (H)
- Wave Directions (D) -circular data-

Aim: assimilation of values produced by WAM with
data recorded by RON in order to improve

e A s (calibrate) WAM estimates. The final target is to

Eourteen: biicys of RON use these data on a higher resolution grid (10 x 10

km) to perform coastal prediction (shallow waters)

Mernra del Vallo




Real Data Example

Wave direction at 224 locations, we hold out observations at 50

locations.
5100
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Figure:

1 | | 1 |
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Training set (circles) and holdout set<(stars)
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Adriatic Wave Data
Data outputs from a deterministic wave model

Implemented by ISPRA (Istituto Superiore per la
Protezione e la Ricerca Ambientale) for the Adriatic Sea

On a grid with ~ 12.5 x 12.5 km cells.
A random set of 250 irregular locations, 50 for validation

Static spatial analysis - a single time slice (hour)
separately during a calm period and a stormy period

Very strong spatial dependence for the directions yields
very slow decay implying a range beyond the largest
pairwise distance in our dataset.
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Inference

For kriging, CRPS values in calm period are 0.0889
(genPGP), 0.0970 (T=| PGP) and 0.6860 nonspatian
genPGP)

The PLSL values are —62.81, —39.49 and 172.13.
For storm, CRPS values are 0.0726, 0.0682 and 0.5432,
PLSL values are —110.14, —99.17 and 140.46

General PGP and wrapped GP comparison - kriging for
hold out locations and corresponding circular distances

For calm time slice, 0.0222 for general PGP, 0.3743 for
the wrapped GP; for storm time slice, 0.0217 and
0.1516

More variation in wave directions during a calm period.
General PGP outperforms T=I1 PGP.

In storm not much difference. Concentration in a
common direction; data does not require genPGP
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(b} bimodal marginal and long range spatial dependence

Figure 9. Predictive density at two hold out locations: the solid line is the predictive density for
the projected Gaussian model with general T, the dashed line is for the projected Gaussian with
T = I and the dash-dot line is for the non-spatial model. The vertical lines denote the held out
angle
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(a) short distance (b) long distance

Figure 11. Posterior bivariate density plot based on observations during a calm period.



Space-time Models

Wave directions are available over 24 time points, two
hours apart

Linear space-time bivariate GP induces a space-time
genPGP

Circular variables ©O(s,t) overs € Dand t € (0,I').

Bivariate space-time GP, constant means, separable
covariance structure, 7" as earlier

cov(f(s,t),0(s',t") = ps(s — 8" ds)pe(t —t'50¢) - T.
Again, only one space-time covariance function.
Assume separabillity in space and time

One-step ahead prediction; with ¢ = ¢4, 19, ..., 1., forecast
to ¢;..; for the n observed locations



Space-time wave direction example

® Again, data during a calm period and during a stormy
period, each over 24 time points two hours apart.

® For the calm period, outputs from April 2nd, 2010 and
April 3rd, 2010, for the storm period, from April 5th,
2010 and April 6th, 2010.

® Observations are provided at regular discrete time
points, that is, 00:00, 02:00 ,...,22:00.

# Hold out data and predict for ¢t = 24

® Model adequacy: empirical vs 90% nominal coverage
for the 200 predictions. For the calm period, 88.5%: for
the stormy period, 95.5%

® Compare the observed vs. predicted at t = 24 at each
of the 200 locations



Calm period, 22:00 on April 3rd, 2010
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Stormy period, 22:00 on Apnil 6th, 2010
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Fipure 15 Comparizon of hold owr dara and model fitting resulis for space-rime model.



Challenge of a dynamic model

Circular variables, #;(s;) at each s; and each
t=1,....Ny,1=1,...,n.

Want a hierarchical model to capture both spatial and
temporal dependence

At the data level, would assume #;(s;) follow a
conditionally independent genPGP with time-varying

parameters ®; and say a common separable
cross-covariance.

At the second level, need to specify dynamics for ®,.

Strong interplay between the parameters in ®; with
regard to distributional shape = a four dimensional
dynamic second stage specification with dependence
between all of the parameters



Wave direction-wave height models

® Realizations of a circular variable © and a linear
variable X as pairs (61.z1),.... (0, xp).

® Usually, conditional modeling.

°

If ©| X, Linear-Circular regression model.

® Usually, von Mises distribution with a suitable link
function, R* to (—m,m), e.g., the arctan function

® If X|0, Circular-Linear regression model.

® Again, a link function is employed; A flexible approach
Is to employ trigonometric polynomials



Measuring association between a circular and a linear variable

#® The pair (6, X) has the support on a cylinder.

#® If their relationship can be written as
X =a+ bcos(©) 4+ csin(O), then ordinary multiple
correlation in the regression setting between X and
(cos(©),sin(©) (Johnson-Wehrly-Mardia).

® Our modeling in this spirit, conditioning X on ©.

® A joint model through a conditional x marginal
specification; marginal specification is a space or
space-time directional data process and, conditionally,
a space or space-time linear process.

® For wave height given wave direction we find a natural
link function to be as above.



The model details

A single linear variable and a single directional variable,
e.g., wave height and wave direction.

A joint parametric model for wave height H and wave
direction © by introducing a latent R in the form

/(H.01%,, %) = [ [(H|6.R. 1) (0, RI¥)dR

f(H|©, R, ¥;) is a customary geostatistical model,
H(s) = g(©(s), L(s)) + w(s) + €(s)

Residual: spatial effect w(s), a mean 0, stationary GP,
and uncorrelated errors term e(s)

Link function g(-): the linear regression of H(s) on Y;(s)
and Y5(s) from the “unobserved” linear GP



cont.

Explicitly, we have

H(s) = o+ B1R(s) cosO(s) + B2 R(s) sin O(s) + w(s) + €(s)

= By + B1Yi(s) + [F2Ya(s) + w(s) + €(s)
Altogether, (H(s),Yi(s),Ya(s))! specifies a trivariate GP

Mean structure and cross-covariance structure easily
calculated.



cont.

£1 and By inform about association between © and H.

When ; and 3, are both 0, the joint model fits the wave
heights and the wave directions separately

Again, the square of the multiple correlation coefficient,
Rl-;ﬂ‘f’ measures strength of conditional dependence.

A regression where the covariates are not observed.

However, if A = 3777 + 35 + 281 52m9p, then

A
Ryy = , .
HY A+ 07 + 77

The posterior distribution of Ri’w directly from posterior

samples of the parameters
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Back to the Adriatic wave data

Data are significant wave heights, essentially the
average height of the highest waves in a wave group.

Outgoing wave directions preferred to incoming, in
degrees relative to a fixed orientation.

Over the Adriatic Sea area, we have 1494 points.
Definition: “calm” is wave height lower than 1 meter.
Between 1 and 2 meters, a pre-storm warning
Above 2 meters a storm warning.

An illustrative hour under each sea state

Stationarity assumption is unrealistic due to anticipated
orographic influences; so only an initial attempt.

Compare joint with independent modeling of the wave
heights and wave directions
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Figure 2: Plot of wave heights (meters) and wave directions under three sea states:

calm, (b) transition and (c) storm
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Table 2: Model comparison: the joint model (H,©®) and independent models H, ©

(a) ealm (b} transition (&) storm
Feature (H8) H,©8 (H®) H,8 (H.®) H, 8
Predictive Mean Square Error (height) 0.0006 0.0006 0.0031  0.0030 0.0102 00108
Average Length of 95% Credible Interval (height) 0.1821 0.1788 0.3405 0.3586 0.5163 0.6345
mean CRPS for wave direction 0.0407  0.0408 0.0276 0.0270 0.0213 0.0223
PLSL for wave direction 977 074 -1098  -1104 -1321 -1318




Table 3: The posterior summaries of the parameter (3

(calm) (storm)
parameter mean 2.5% 97.5% mean 2.5% 97.5%
Bo 0.1612 0.0343  0.2816 0.5483  -0.0242  1.1745
51 -0.0117  -0.0405  0.0153 -0.1439  -0.2770  -0.0062

B2 0.0329 0.0091  0.0549 0.2061 0.0670 0.3564
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Space-time directions and heights

Envision an underlying process for heights and
directions in continuous space and time

Hourly resolution using the ISPRA output

10 illustrative locations, time series of hourly heights,
first ten days in April, 2010

A range of behavior, including a transition from calm to
storm and back to calm.

At the conditional level,
H(_S, t) = By + ;‘31};1(_5, t) + ISQ};2(51 t) + w(s, f) + €(s, f).

Simplify w(s,t) to w(s), a zero-centered GP. Otherwise,
Identifiability challenges

Note that 3, changes with sea state so we only fit the
model in either a calm window or a storm window.



An Example

Randomly select 200 locations; goal is prediction at ;..
Calm period, April 2nd to April 3rd, 2010, 24 time points.
Storm period, April 5th to April 6th, 2010, 24 time points.

During the calm period, 51 and 3> are nearly zero,
approximate independence

During a storm period, 3; and 3y clearly depart from
zero, strong dependence

{rﬁ dominates the variation in heights, a twenty-fold
Increase during the storm period.

0p.s 1S roughly double (range roughly half) in calm
compared with storm; ¢y ; Is roughly half (range roughly
double) in calm compared with storm

Prediction at t54. Predict direction better in a storm and
height dramatically better during a calm
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Figure 5: Time series of wave heights (lower panel) for 10 illustrative locations (upper
panel} from n = 300 in the Adriatic Sea region in Aprl 2010, The two time windows
(calm and stormy) used in Section 3.3 are highlighted.



Table 4: Summaries for one-step ahead prediction

calm storm

Predictive Mean Square Error (height) 0.0522  0.4497
mean CRPS for wave direction 0.0973  0.0647




Some New Work



Aspect process

To estimate surface gradients and slopes from a
(possibly) irregularly spaced dataset

Usual approaches are descriptive - projection of the
elevation data to a regular grid, slope calculated at each
point of the grid by comparison of the elevation to a set
of neighboring grid points.

Usually the 8 compass neighbors (N, NE, E, SE, S, SW,
W and NW) are used

Aspect is direction of max slope

Though slope and aspect are obtained as angles, no
awareness of the literature on angular variables



cont.

If elevation surface is viewed as a realization of a
(Gaussian process, then,

max slope ats is (s) = ||Vy(s)||. So we have a max
slope process and

direction of max slope is u = %%II and, formally, the
aspect at s is the angle associated with this maximum
slope direction, i.e., f,4,(s) = atanz%, an aspect

pProcess

Starting with a bivariate GP, we can model the aspect
process as a projected GP

Fully resolved with full inference for slope and aspect

Computational challenge



Angular discrepancy process

Suppose we have two dependent surfaces we seek to
compare, e.g., a surface of species abundance Y (s)
and a surface of elevation, X (s).

Suppose the surfaces are described as a realization of
a bivariate Gaussian process

Associated with each surface we can obtain directional
gradients at each location, DY (s) and D, X(s)

We can explicitly obtain the direction of max gradient at

: Vy { Vx(s)
each location for each surface: Ty and V()"

Associated angles are: 6y (s) and fx(s).

Using the circular distance, 1 — cos(fy(s) — 0x(s)),
yields an angular discrepancy process

A useful sensitivity measure for comparing a response
and a covariate



Point patterns on a circle

Suppose we look at crime times during a period, say a
week, for a city (or a district within a city)

We wrap the times onto a circle; the number of times
(crimes) is random, so a point pattern on a circle

To model the point pattern, an intensity function

If the intensity function is viewed as a realization of a
stochastic process over a circular domain, we need a
circular covariance function

2=in(8,2)

® Anexampleis K(#)=e~— ¢  (Soubeyrand et al.)

® Suppose we add the spatial location of the crime. Now,

a space-time point pattern with circular time

Now, a space-time intensity over D x (0, 2x] with
space-time interaction

Computational challenges



