Assessing parametric regression models with directional predictors

Eduardo García–Portugués (eduardo.garcia@usc.es) Ingrid Van Keilegom Rosa M. Crujeiras Wenceslao González–Manteiga

Department of Statistics and Operations Research University of Santiago de Compostela

Advances in Directional Statistics, May 20, 2014

► Data: orientations (X) and log-burnt areas (Y) of 26870 wildfires in Portugal during 1985-2005.

Figure : Fire orientation.

- ▶ Data: orientations (X) and log-burnt areas (Y) of 26870 wildfires in Portugal during 1985–2005.
- ► What is the relationship m between X and Y?

 $Y = \mathbf{m}(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon$

Figure : Fire orientation.

Figure : Fire orientation.

- ► Data: orientations (X) and log-burnt areas (Y) of 26870 wildfires in Portugal during 1985-2005.
- ► What is the relationship m between X and Y?

 $Y = \mathbf{m}(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon$

- Two approaches for studying *m*:
 - Estimate *m* nonparametrically.
 - Check if m can be specified as a certain parametric model.

Aim of this work

Develop new nonparametric methods for the **regression** with directional predictor \mathbf{X} and linear response Y:

(1) Nonparametric **estimation** of the regression function *m*,

$$\{(\mathbf{X}_i, Y_i)\}_{i=1}^n \implies \widehat{m}_h.$$

Organization Goodness-of-fit test for parametric regression models:

$$H_0: m \in \mathcal{M}_{\Theta} = \{m_{\theta}: \theta \in \Theta\}.$$

E. García–Portugués et al.

Nonparametric estimation of the regression function Estimator Properties

Q Goodness-of-fit tests for models with directional predictor

Testing a parametric model Calibration in practice Simulation study

Nonparametric estimation of the regression function Estimator Properties

2 Goodness-of-fit tests for models with directional predictor Testing a parametric model Calibration in practice

Simulation study

3 Data application

5 / 25

E. García-Portugués et al.

- Denote the q-sphere by $\Omega_q = \{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 \}.$
- Let (\mathbf{X}, Y) be a random variable with support in $\Omega_q \times \mathbb{R}$.
- Consider the regression model

$$Y = m(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon \quad \text{with} \quad \left\{ \begin{array}{l} m(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \\ \sigma^2(\mathbf{x}) = \mathbb{V}\mathrm{ar}\left[Y|\mathbf{X} = \mathbf{x}\right], \end{array} \right.$$

and with $\varepsilon \perp \mathbf{X}$, $\mathbb{E}[\varepsilon] = 0$ and $\mathbb{V}ar[\varepsilon] = 1$.

1

- Denote the q-sphere by $\Omega_q = \{ \mathbf{x} \in \mathbb{R}^{q+1} : ||\mathbf{x}|| = 1 \}.$
- Let (\mathbf{X}, Y) be a random variable with support in $\Omega_q \times \mathbb{R}$.
- Consider the regression model

$$Y = m(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon \quad \text{with} \quad \left\{ \begin{array}{l} m(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \\ \sigma^2(\mathbf{x}) = \mathbb{V}\mathrm{ar}\left[Y|\mathbf{X} = \mathbf{x}\right], \end{array} \right.$$

and with $\varepsilon \perp \mathbf{X}$, $\mathbb{E}[\varepsilon] = 0$ and $\mathbb{V}ar[\varepsilon] = 1$.

- We want to estimate *m* nonparametrically from $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$.
- ▶ We will require Taylor expansions, so the first condition is
 - LL1 Extend m and f from Ω_q to $\mathbb{R}^{q+1} \setminus \{0\}$ by $m(\mathbf{x}) \equiv m(\mathbf{x}/||\mathbf{x}||)$ and $f(\mathbf{x}) \equiv f(\mathbf{x}/||\mathbf{x}||)$. m is third and f is twice continuously differentiable and f is bounded away from zero.

► Let
$$\mathbf{x}, \mathbf{X}_i \in \Omega_q$$
. The one term Taylor expansion of m is:
 $m(\mathbf{X}_i) = m(\mathbf{x}) + \nabla m(\mathbf{x})^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$

E. García–Portugués et al.

۸

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \left(\mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T \right) \left(\mathbf{X}_i - \mathbf{x} \right) + \mathcal{O} \left(\left| \left| \mathbf{X}_i - \mathbf{x} \right| \right|^2 \right)$$

E. García-Portugués et al.

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \mathbf{B}_q \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2 \right)$$
$$\approx \beta_0 + \boldsymbol{\beta}_{1:(q+1)}^T \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}),$$

with $\mathbf{B}_q = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_q \mathbf{B}_q^T = \mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T$, $\beta_0 = m(\mathbf{x})$ and $\boldsymbol{\beta}_{1:(q+1)} = \mathbf{B}_q^T \boldsymbol{\nabla} m(\mathbf{x})$.

E. García-Portugués et al.

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \mathbf{B}_q \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$$
$$\approx \beta_0 + \boldsymbol{\beta}_{1:(q+1)}^T \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}),$$

with $\mathbf{B}_q = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_q \mathbf{B}_q^T = \mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T$, $\beta_0 = m(\mathbf{x})$ and $\beta_{1:(q+1)} = \mathbf{B}_q^T \nabla m(\mathbf{x})$.

► This motivates the weighted minimum least squares problem (p = 0 for local constant and p = 1 for local linear)

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+1}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - \delta_{p,1} \left(\beta_1, \dots, \beta_q \right)^T \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) \right)^2 L_h(\mathbf{x}, \mathbf{X}_i).$$

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \boldsymbol{\nabla} m(\mathbf{x})^T \mathbf{B}_q \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) + \mathcal{O}\left(||\mathbf{X}_i - \mathbf{x}||^2\right)$$
$$\approx \beta_0 + \boldsymbol{\beta}_{1:(q+1)}^T \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}),$$

with $\mathbf{B}_q = (\mathbf{b}_1, \dots, \mathbf{b}_q)_{(q+1) \times q}$ such that $\mathbf{B}_q \mathbf{B}_q^T = \mathbf{I}_{q+1} - \mathbf{x} \mathbf{x}^T$, $\beta_0 = m(\mathbf{x})$ and $\boldsymbol{\beta}_{1:(q+1)} = \mathbf{B}_q^T \boldsymbol{\nabla} m(\mathbf{x})$.

► This motivates the weighted minimum least squares problem (p = 0 for local constant and p = 1 for local linear)

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+1}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - \delta_{p,1} \left(\beta_1, \dots, \beta_q \right)^T \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) \right)^2 L_h(\mathbf{x}, \mathbf{X}_i).$$

The solution is given by

$$\widehat{m}_{h,p}(\mathbf{x}) = \widehat{\beta}_0 = \mathbf{e}_{1,p}^T \left(\boldsymbol{\mathcal{X}}_{\mathbf{x},p}^T \boldsymbol{\mathcal{W}}_{\mathbf{x}} \boldsymbol{\mathcal{X}}_{\mathbf{x},p} \right)^{-1} \boldsymbol{\mathcal{X}}_{\mathbf{x},p}^T \boldsymbol{\mathcal{W}}_{\mathbf{x}} \mathbf{Y} = \sum_{i=1}^n W_p^n \left(\mathbf{x}, \mathbf{X}_i \right) Y_i,$$

where $\mathcal{W}_{\mathbf{x}} = \operatorname{diag}\left(L_h(\mathbf{x}, \mathbf{X}_1), \dots, L_h(\mathbf{x}, \mathbf{X}_n)\right)$ and

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \ \boldsymbol{\mathcal{X}}_{\mathbf{x},0} = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \ \boldsymbol{\mathcal{X}}_{\mathbf{x},1} = \begin{pmatrix} 1 & (\mathbf{X}_1 - \mathbf{x})^T \mathbf{B}_q \\ \vdots & \vdots \\ 1 & (\mathbf{X}_n - \mathbf{x})^T \mathbf{B}_q \end{pmatrix}$$

E. García-Portugués et al.

- Di Marzio, M., Panzera, A., and Taylor, C. C. (2014). Nonparametric regression for spherical data *J. Amer. Statist. Assoc.* (to appear).
- ► Taylor expansion based on the tangent-normal decomposition $\mathbf{X}_i = \mathbf{x} \cos(\theta_{\mathbf{x},i}) + \boldsymbol{\xi}_{\mathbf{x},i} \sin(\theta_{\mathbf{x},i})$, where $\theta_{\mathbf{x},i} \in [0, 2\pi)$, $\mathbf{x}, \boldsymbol{\xi}_{\mathbf{x},i} \in \Omega_q$ and $\boldsymbol{\xi}_{\mathbf{x},i} \perp \mathbf{x}$:

 $m(\mathbf{X}_i) = m(\mathbf{x}) + \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T \boldsymbol{\nabla} m(\mathbf{x}) + \mathcal{O}\left(\theta_{\mathbf{x},i}^2\right).$

- Di Marzio, M., Panzera, A., and Taylor, C. C. (2014). Nonparametric regression for spherical data *J. Amer. Statist. Assoc.* (to appear).
- ► Taylor expansion based on the tangent-normal decomposition $\mathbf{X}_i = \mathbf{x} \cos(\theta_{\mathbf{x},i}) + \boldsymbol{\xi}_{\mathbf{x},i} \sin(\theta_{\mathbf{x},i})$, where $\theta_{\mathbf{x},i} \in [0, 2\pi)$, $\mathbf{x}, \boldsymbol{\xi}_{\mathbf{x},i} \in \Omega_q$ and $\boldsymbol{\xi}_{\mathbf{x},i} \perp \mathbf{x}$:

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T \boldsymbol{\nabla} m(\mathbf{x}) + \mathcal{O}\left(\theta_{\mathbf{x},i}^2\right).$$

Weighted minimum least squares problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+2}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - (\beta_1, \dots, \beta_{q+1})^T \, \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i} \right)^2 K_{\kappa}(\cos(\theta_{\mathbf{x},i})),$$
$$\boldsymbol{\mathcal{X}}_{\mathbf{x},1} = \begin{pmatrix} 1 & \theta_{\mathbf{x},1} \boldsymbol{\xi}_{\mathbf{x},1}^T \\ \vdots & \vdots \\ 1 & \theta_{\mathbf{x},n} \boldsymbol{\xi}_{\mathbf{x},n}^T \end{pmatrix}, \boldsymbol{\mathcal{W}}_{\mathbf{x}} = \operatorname{diag}\left(K_{\kappa}(\cos(\theta_{\mathbf{x},1})), \dots, K_{\kappa}(\cos(\theta_{\mathbf{x},n})) \right).$$

E. García-Portugués et al.

- Di Marzio, M., Panzera, A., and Taylor, C. C. (2014). Nonparametric regression for spherical data *J. Amer. Statist. Assoc.* (to appear).
- ► Taylor expansion based on the tangent-normal decomposition $\mathbf{X}_i = \mathbf{x} \cos(\theta_{\mathbf{x},i}) + \boldsymbol{\xi}_{\mathbf{x},i} \sin(\theta_{\mathbf{x},i})$, where $\theta_{\mathbf{x},i} \in [0, 2\pi)$, $\mathbf{x}, \boldsymbol{\xi}_{\mathbf{x},i} \in \Omega_q$ and $\boldsymbol{\xi}_{\mathbf{x},i} \perp \mathbf{x}$:

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T \boldsymbol{\nabla} m(\mathbf{x}) + \mathcal{O}\left(\theta_{\mathbf{x},i}^2\right).$$

Weighted minimum least squares problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+2}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - (\beta_1, \dots, \beta_{q+1})^T \theta_{\mathbf{x}, i} \boldsymbol{\xi}_{\mathbf{x}, i} \right)^2 K_{\kappa}(\cos(\theta_{\mathbf{x}, i})),$$
$$\boldsymbol{\mathcal{X}}_{\mathbf{x}, 1} = \begin{pmatrix} 1 & \theta_{\mathbf{x}, 1} \boldsymbol{\xi}_{\mathbf{x}, 1}^T \\ \vdots & \vdots \\ 1 & \theta_{\mathbf{x}, n} \boldsymbol{\xi}_{\mathbf{x}, n}^T \end{pmatrix}, \boldsymbol{\mathcal{W}}_{\mathbf{x}} = \operatorname{diag} \left(K_{\kappa}(\cos(\theta_{\mathbf{x}, 1})), \dots, K_{\kappa}(\cos(\theta_{\mathbf{x}, n})) \right).$$

• $\boldsymbol{\mathcal{X}}_{\mathbf{x},1}^T \boldsymbol{\mathcal{W}}_{\mathbf{x}} \boldsymbol{\mathcal{X}}_{\mathbf{x},1}$ is singular, so a pseudo-inverse is required.

E. García–Portugués et al.

- Di Marzio, M., Panzera, A., and Taylor, C. C. (2014). Nonparametric regression for spherical data *J. Amer. Statist. Assoc.* (to appear).
- ► Taylor expansion based on the tangent-normal decomposition $\mathbf{X}_i = \mathbf{x} \cos(\theta_{\mathbf{x},i}) + \boldsymbol{\xi}_{\mathbf{x},i} \sin(\theta_{\mathbf{x},i})$, where $\theta_{\mathbf{x},i} \in [0, 2\pi)$, $\mathbf{x}, \boldsymbol{\xi}_{\mathbf{x},i} \in \Omega_q$ and $\boldsymbol{\xi}_{\mathbf{x},i} \perp \mathbf{x}$:

$$m(\mathbf{X}_i) = m(\mathbf{x}) + \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T \boldsymbol{\nabla} m(\mathbf{x}) + \mathcal{O}\left(\theta_{\mathbf{x},i}^2\right).$$

Weighted minimum least squares problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{q+2}} \sum_{i=1}^{n} \left(Y_i - \beta_0 - (\beta_1, \dots, \beta_{q+1})^T \, \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i} \right)^2 K_{\kappa}(\cos(\theta_{\mathbf{x},i})),$$
$$\boldsymbol{\mathcal{X}}_{\mathbf{x},1} = \begin{pmatrix} 1 & \theta_{\mathbf{x},1} \boldsymbol{\xi}_{\mathbf{x},1}^T \\ \vdots & \vdots \\ 1 & \theta_{\mathbf{x},n} \boldsymbol{\xi}_{\mathbf{x},n}^T \end{pmatrix}, \boldsymbol{\mathcal{W}}_{\mathbf{x}} = \operatorname{diag}\left(K_{\kappa}(\cos(\theta_{\mathbf{x},1})), \dots, K_{\kappa}(\cos(\theta_{\mathbf{x},n})) \right).$$

X^T_{x,1}*W*_x*X*_{x,1} is singular, so a pseudo-inverse is required.
 ► Results for bias, variance and normality are equivalent to ours.
 E. García-Portugués *et al.* Assessing parametric regression models with directional predictors

O Local constant (p = 0), the Nadaraya–Watson estimator:

$$\widehat{m}_{h,0}(\mathbf{x}) = \sum_{i=1}^{n} W_p^n(\mathbf{x}, \mathbf{X}_i) Y_i = \frac{\sum_{i=1}^{n} L_h(\mathbf{x}, \mathbf{X}_i) Y_i}{\sum_{j=1}^{n} L_h(\mathbf{x}, \mathbf{X}_j)}$$

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the iterated logarithm for kernel estimator of regression function based on directional data. *Chinese Ann. Math. Ser. B*, 21(4):489–498.

E. García-Portugués et al.

O Local constant (p = 0), the Nadaraya–Watson estimator:

$$\widehat{m}_{h,0}(\mathbf{x}) = \sum_{i=1}^{n} W_p^n(\mathbf{x}, \mathbf{X}_i) Y_i = \frac{\sum_{i=1}^{n} L_h(\mathbf{x}, \mathbf{X}_i) Y_i}{\sum_{j=1}^{n} L_h(\mathbf{x}, \mathbf{X}_j)}$$

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the iterated logarithm for kernel estimator of regression function based on directional data. *Chinese Ann. Math. Ser. B*, 21(4):489–498.

2 Circular case (q = 1): set $\mathbf{x} = (\cos \theta, \sin \theta)$, $\mathbf{X}_i = (\cos \Theta_i, \sin \Theta_i)$ and $\kappa = h^{-2}$, for $\theta, \Theta_i \in [0, 2\pi)$. For p = 1, $\mathbf{B}_1 = (-\sin \theta, \cos \theta)^T$ and $\mathbf{B}_1 \perp \mathbf{x}$:

$$\boldsymbol{\mathcal{X}}_{\mathbf{x},1} = \begin{pmatrix} 1 & (\mathbf{X}_1 - \mathbf{x})^T \mathbf{B}_1 \\ \vdots & \vdots \\ 1 & (\mathbf{X}_n - \mathbf{x})^T \mathbf{B}_1 \end{pmatrix} = \begin{pmatrix} 1 & \sin(\theta - \Theta_1) \\ \vdots & \vdots \\ 1 & \sin(\theta - \Theta_n) \end{pmatrix}$$

E. García-Portugués et al.

1 Local constant (p = 0), the Nadaraya–Watson estimator:

$$\widehat{m}_{h,0}(\mathbf{x}) = \sum_{i=1}^{n} W_p^n(\mathbf{x}, \mathbf{X}_i) Y_i = \frac{\sum_{i=1}^{n} L_h(\mathbf{x}, \mathbf{X}_i) Y_i}{\sum_{j=1}^{n} L_h(\mathbf{x}, \mathbf{X}_j)}$$

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the iterated logarithm for kernel estimator of regression function based on directional data. *Chinese Ann. Math. Ser. B*, 21(4):489–498.

2 Circular case (q = 1): set $\mathbf{x} = (\cos \theta, \sin \theta)$, $\mathbf{X}_i = (\cos \Theta_i, \sin \Theta_i)$ and $\kappa = h^{-2}$, for $\theta, \Theta_i \in [0, 2\pi)$. For p = 1, $\mathbf{B}_1 = (-\sin \theta, \cos \theta)^T$ and $\mathbf{B}_1 \perp \mathbf{x}$:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \sum_{i=1}^n \left(Y_i - \beta_0 - \beta_1 \sin(\theta - \Theta_i) \right)^2 L_{\kappa} \left(\kappa (1 - \cos(\theta - \Theta_i)) \right).$$

Di Marzio, M., Panzera, A., and Taylor, C. C. (2009). Local polynomial regression for circular predictors. *Statist. Probab. Lett.*, 79(19):2066–2075.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

 $\begin{aligned} \overline{\mathbf{Theorem}} & (\text{Conditional bias and variance}) \\ \hline & Under \text{ assumptions } LL1-LL4, \text{ for } \mathbf{x} \in \Omega_q \text{ (uniformly)}, \\ & \mathbb{E}\left[\widehat{m}_{h,p}(\mathbf{x}) | \mathbf{X}_1, \dots, \mathbf{X}_n\right] = m(\mathbf{x}) + b_q(L)B_p(\mathbf{x})h^2 + o_{\mathbb{P}}\left(h^2\right), \\ & \mathbb{Var}\left[\widehat{m}_{h,p}(\mathbf{x}) | \mathbf{X}_1, \dots, \mathbf{X}_n\right] = \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q f(\mathbf{x})} \sigma^2(\mathbf{x}) + o_{\mathbb{P}}\left((nh^q)^{-1}\right), \\ & \text{where } B_p(\mathbf{x}) = \begin{cases} \frac{2}{q} \frac{\nabla f(\mathbf{x})^T}{f(\mathbf{x})} \nabla m(\mathbf{x}) + \frac{1}{q} \text{tr}\left[\mathcal{H}_m(\mathbf{x})\right], & p = 0, \\ \frac{1}{q} \text{tr}\left[\mathcal{H}_m(\mathbf{x})\right], & p = 1. \end{cases} \end{aligned}$

Conditions

- LL2 σ^2 is uniformly continuous and bounded away from zero.
- LL3 The kernel $L: [0, \infty) \to [0, \infty)$ is a bounded function with exponential decay $(L(r) \le Me^{-\alpha r})$.
- LL4 The positive sequence $h = h_n$ satisfies $h \to 0$ and $nh^q \to \infty$.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. *Ann. Statist.*, 22(3):1346–1370.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

 From the conditional bias and variance, expansions for conditional MSE, MISE and h_{AMISE} bandwidth follow. Simulations bandwidth selection

Corollary (Equivalent kernel, as in Fan and Gijbels (1996)) Under assumptions LL1-LL4, the weights in the estimator $\widehat{m}_{h,p}(\mathbf{x}) = \sum_{i=1}^{n} W_p^n(\mathbf{x}, \mathbf{X}_i) Y_i$ at $\mathbf{x} \in \Omega_q$ satisfy (uniformly) $W_p^n(\mathbf{x}, \mathbf{X}_i) = \frac{1}{nh^q \lambda_q(L) f(\mathbf{x})} L\left(\frac{1-\mathbf{x}^T \mathbf{X}_i}{h^2}\right) (1+o_{\mathbb{P}}(1)).$

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman & Hall.

 $\begin{array}{l} \displaystyle \frac{\text{Theorem (Asymptotic normality)}}{\textit{Under assumptions LL1-LL4, for } \mathbf{x} \in \Omega_q \textit{ such that for a } \delta > 0} \\ \mathbb{E}\left[(Y - m(\mathbf{X}))^{2+\delta} | \mathbf{X} = \mathbf{x}\right] < \infty, \\ \displaystyle \sqrt{nh^q} \left(\widehat{m}_{h,p}(\mathbf{x}) - m(\mathbf{x}) - b_q(L)B_p(\mathbf{x})h^2\right) \\ & \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{f(\mathbf{x})}\sigma^2(\mathbf{x})\right). \end{array} \right.$

Nonparametric estimation of the regression function Estimator Properties

Q Goodness-of-fit tests for models with directional predictor

Testing a parametric model Calibration in practice Simulation study

3 Data application

12 / 25

E. García-Portugués et al.

- We want to check $H_0: m \in \mathcal{M}_{\Theta} = \{m_{\theta} : \theta \in \Theta\}.$
- ▶ No test available in the literature for checking this hypothesis.

González-Manteiga, W. and Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests for regression models. *TEST*, 22(3):361–411.

- We want to check $H_0: m \in \mathcal{M}_{\Theta} = \{m_{\theta} : \theta \in \Theta\}.$
- ▶ No test available in the literature for checking this hypothesis.
 - González-Manteiga, W. and Crujeiras, R. M. (2013). An updated review of goodness-of-fit tests for regression models. *TEST*, 22(3):361–411.
- ► We consider as statistic the smoothed weighted L²-distance between m̂_{h,p} and m_ê:

parametric regression fits. Ann. Statist., 21(4):1926-1947.

$$T_n = \int_{\Omega_q} \left(\widehat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p} m_{\widehat{\boldsymbol{\theta}}}(\mathbf{x}) \right)^2 \widehat{f}_h(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}).$$

where $\mathcal{L}_{h,p}m(\mathbf{x}) = \sum_{i=1}^{n} W_n^p(\mathbf{x}, \mathbf{X}_i) m(\mathbf{X}_i).$

- Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999). Goodness-of-fit test for linear models based on local polynomials. *Statist. Probab. Lett.*, 42(1):39–46.

Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Limit distribution

Theorem (Limit distribution of T_n) \triangleright Sketch of the proof Under conditions LL1-LL4, GF1-GF2 and under $H_0: m \in \mathcal{M}_{\Theta}$,

$$nh^{\frac{q}{2}}\left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right).$$

Conditions

GF1 Under H_0 , there exists a $\hat{\theta}$ such that $\hat{\theta} - \theta_0 = \mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{2}}\right)$.

GF2 m_{θ} is continuously differentiable as a function of θ , being this derivative also continuous for $\mathbf{x} \in \Omega_q$.

Theorem (Limit distribution of T_n) \triangleright Sketch of the proof Under conditions LL1-LL4, GF1-GF2 and under $H_0: m \in \mathcal{M}_{\Theta}$,

 $nh^{\frac{q}{2}}\left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right).$

- Conditions
- Constants

$$\nu^{2} = \int_{\Omega_{q}} \sigma^{4}(\mathbf{x}) w(\mathbf{x})^{2} \omega_{q}(d\mathbf{x})$$

$$\times \gamma_{q} \lambda_{q}(L)^{-4} \int_{0}^{\infty} r^{\frac{q}{2}-1} \left\{ \int_{0}^{\infty} \rho^{\frac{q}{2}-1} L(\rho) \varphi_{q}(r,\rho) d\rho \right\}^{2} dr$$

$$\varphi_{q}(r,\rho) = \left\{ \begin{array}{c} L\left(r+\rho-2(r\rho)^{\frac{1}{2}}\right) + L\left(r+\rho+2(r\rho)^{\frac{1}{2}}\right), \quad q=1, \\ \int_{-1}^{1} \left(1-u^{2}\right)^{\frac{q-3}{2}} L\left(r+\rho-2u(r\rho)^{\frac{1}{2}}\right) du, \quad q \ge 2. \end{array} \right.$$

14 / 25

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Theorem (Limit distribution of T_n) \triangleright Sketch of the proof Under conditions LL1-LL4, GF1-GF2 and under $H_0: m \in \mathcal{M}_{\Theta}$,

 $nh^{\frac{q}{2}}\left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right).$

- Conditions
- Constants

$$\nu^{2} = \int_{\Omega_{q}} \sigma^{4}(\mathbf{x}) w(\mathbf{x})^{2} \omega_{q}(d\mathbf{x})$$
$$\times \gamma_{q} \lambda_{q}(L)^{-4} \int_{0}^{\infty} r^{\frac{q}{2}-1} \left\{ \int_{0}^{\infty} \rho^{\frac{q}{2}-1} L(\rho) \varphi_{q}(r,\rho) d\rho \right\}^{2} dr$$

• If L is the von Mises kernel, $\nu^2 = \int_{\Omega_q} \sigma^4(\mathbf{x}) w(\mathbf{x})^2 \, \omega_q(d\mathbf{x}) \times (8\pi)^{-\frac{q}{2}}$.

E. García-Portugués et al.

• We consider a function $g: \Omega_q \longrightarrow \mathbb{R}$ such that $g \notin \mathcal{M}_{\Theta}$ and the Pitman local alternative:

$$H_{1L}: m(\mathbf{x}) = m_{\boldsymbol{\theta}_0}(\mathbf{x}) + \left(nh^{\frac{q}{2}}\right)^{-\frac{1}{2}}g(\mathbf{x}), \, \forall \mathbf{x} \in \Omega_q.$$

Theorem (Power under local alternatives) Under conditions LL1–LL4, GF2–GF4 and under H_{1L} , $nh^{\frac{q}{2}}\left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q}\int_{\Omega_q}\sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right)$ $\xrightarrow{d} \mathcal{N}\left(\int_{\Omega_q}g(\mathbf{x})^2f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}), 2\nu^2\right).$

Conditions

GF3 Under
$$H_{1L}$$
, there exists a $\hat{\theta}$ such that $\hat{\theta} - \theta_0 = \mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{2}}\right)$.
GF4 The function g is continuous.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Algorithm (Testing procedure)
• Bootstrap consistency Let $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$ be a random sample. To test $H_0: m \in \mathcal{M}_{\Theta}$: • Compute $\widehat{\theta}$, and set $\widehat{\varepsilon}_i = Y_i - \widehat{m}_{h,p}(\mathbf{X}_i)$, $i = 1, \ldots, n$. 2 Compute $T_n = \int_{\Omega} \left(\widehat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p} m_{\widehat{\theta}}(\mathbf{x}) \right)^2 \widehat{f}_h(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}).$ **3** Bootstrap strategy. For $b = 1, \ldots, B$: • Set $Y_i^* = m_{\widehat{\theta}}(\mathbf{X}_i) + \widehat{\varepsilon}_i V_i$, i = 1, ..., n, where V_i are golden binary random variables. • Compute $\widehat{\theta}^*$ from $\{(\mathbf{X}_i, Y_i^*)\}_{i=1}^n$ and set $T_n^{*b} = \int_{\Omega_n} \left(\widehat{m}_{h,p}^*(\mathbf{x}) - \mathcal{L}_{h,p} m_{\widehat{\boldsymbol{\theta}}^*}(\mathbf{x}) \right)^2 \widehat{f}_h(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}).$ Estimate the *p*-value as $\# \{T_n^{*b} \leq T_n\} / B$.

E. García-Portugués et al.

Scenarios: $Y = m_{\theta}(\mathbf{X}) + \sigma(\mathbf{X})\varepsilon$.

- Density of X: 6 different directional densities.
- Regression function m_{θ} : 12 new directional-linear models.
- ► Noise $\varepsilon \sim \mathcal{N}(0, 1)$, $\sigma(\mathbf{x})$ constant and variable (heteroskedastic).
- ► Deviations from $H_0: m \in \mathcal{M}_{\Theta}$ constructed by sampling from $m_{\delta}(\mathbf{x}) = m_{\theta_0}(\mathbf{x}) + \delta\Delta(\mathbf{x})$. Details

Simulation setting:

- Sample sizes n = 100, 250, 500, dimensions q = 1, 2, 3, local constant (p = 0) and linear (p = 1) estimators.
- ► B = 1000 bootstrap replicates and M = 1000 Monte Carlo trials for evaluating the empirical size/power of the test.
- Bandwidth grid for exploring its effect.

E. García-Portugués et al.

Figure : Densities D1 to D6 for the circular and spherical cases.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Figure : Models M1 to M12 for the circular case (q = 1). Details

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Figure : Empirical sizes for $\alpha = 0.05$ with p = 0 (upper row) and p = 1 (lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500. More sizes

USC

Nonparametric estimation of the regression function Estimator Properties

2 Goodness–of–fit tests for models with directional predictor

Testing a parametric model Calibration in practice Simulation study

 Data: 102 averaged orientations and log-burnt areas of the wildfires in each watershed of Portugal in 1985–2005.

Figure : Wildfires data with two parametric fits and a local linear fit.

- Data: 102 averaged orientations and log-burnt areas of the wildfires in each watershed of Portugal in 1985–2005.
- No effect model:

$$m(\mathbf{x}) = c.$$

- ► FDR *p*-values: 0.027 (loc. const.) and 0.047 (loc. lin.).
- Evidence to reject the model.

Figure : p-values of the goodness-of-fit test for no effect model.

- Data: 102 averaged orientations and log-burnt areas of the wildfires in each watershed of Portugal in 1985–2005.
- Linear model:

$$m(\mathbf{x}) = c + \boldsymbol{\beta}^T \mathbf{x}$$

- ► FDR *p*-values: 0.230 (loc. const.) and 0.204 (loc. lin.).
- No evidence to reject the model.

- Figure : p-values of the goodness-of-fit test for linear model.
- Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying geographical patterns of wildfire orientation: A watershed-based analysis. *Forest Ecol. Manag.*, 264, 98–107.

- Data: 102 averaged orientations and log-burnt areas of the wildfires in each watershed of Portugal in 1985–2005.
- Linear model:

$$m(\theta) = c + \beta_1 \cos(\theta) + \beta_2 \sin(\theta)$$

- ► FDR *p*-values: 0.230 (loc. const.) and 0.204 (loc. lin.).
- No evidence to reject the model.

Figure : p-values of the goodness-of-fit test for linear model.

- Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying geographical patterns of wildfire orientation: A watershed-based analysis. *Forest Ecol. Manag.*, 264, 98–107.

Main references

		I
1.22		

Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999).

Goodness-of-fit test for linear models based on local polynomials. Statist. Probab. Lett., 42(1):39-46.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying geographical patterns of wildfire orientation: A watershed-based analysis. *Forest Ecol. Manag.*, 264, 98–107.

Di Marzio, M., Panzera, A., and Taylor, C. C. (2009). Local polynomial regression for circular predictors. *Statist. Probab. Lett.*, 79(19):2066–2075.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications, volume 66 of Monographs on Statistics and Applied Probability. Chapman & Hall.

García-Portugués, E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation with directional data. *Electron. J. Stat.*, 7:1655–1685.

García-Portugués, E., Crujeiras, R., and González-Manteiga, W. (2014). Central limit theorems for directional and linear data with applications. arXiv:1402.6836.

Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist., 21(4):1926–1947.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression Ann. Statist., 22(3):1346–1370.

Holes in the support and local linear estimation. Local linear smoothing can be worse than local constant smoothing when there are holes in the support.

Figure : Local constant and linear estimators with predictor for samples with areas with low density.

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

- **1** Holes in the support and local linear estimation.
- **2** Nonparametric wild bootstrap: $\hat{\varepsilon}_i = Y_i \hat{m}_{h,p}(\mathbf{X}_i)$. Versus the parametric one that we have used: $\hat{\varepsilon}_i = Y_i m_{\hat{\theta}}(\mathbf{X}_i)$.

Figure : Sizes for nonparametric and parametric wild bootstraps.

- I Holes in the support and local linear estimation.
- **2** Nonparametric wild bootstrap: $\hat{\varepsilon}_i = Y_i \hat{m}_{h,p}(\mathbf{X}_i)$.
- **Estimation bandwidths for testing.** Bandwidths arising from estimation criteria are not always a reasonable option.

E. García-Portugués et al.

Concept	Our proposal	Di Marzio <i>et al.</i> (2014)
Taylor expansion	$\begin{vmatrix} m(\mathbf{X}_i) \approx m(\mathbf{x}) \\ + \boldsymbol{\nabla} m(\mathbf{x})^T \mathbf{B}_q \mathbf{B}_q^T (\mathbf{X}_i - \mathbf{x}) \end{vmatrix}$	$ \begin{vmatrix} m(\mathbf{X}_i) \approx m(\mathbf{x}) + \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T \boldsymbol{\nabla} m(\mathbf{x}), \\ \mathbf{X}_i = \mathbf{x} \cos(\theta_{\mathbf{x},i}) + \boldsymbol{\xi}_{\mathbf{x},i} \sin(\theta_{\mathbf{x},i}) \end{vmatrix} $
$oldsymbol{\mathcal{X}}_{\mathbf{x},1}$'s $i ext{-th row}$	$\left(1, \mathbf{B}_q (\mathbf{X}_i - \mathbf{x})^T\right)_{q+1}$	$\left(1, \theta_{\mathbf{x},i} \boldsymbol{\xi}_{\mathbf{x},i}^T\right)_{q+2}$
Bandwidth	$h = \kappa^{-\frac{1}{2}}$	$\kappa = h^{-2}$
Kernel	$ L_h(\mathbf{x}, \mathbf{X}_i) = c_{h,q}(L) L\left(\frac{1 - \mathbf{x}^T \mathbf{X}_i}{h^2}\right) $	$K_{\kappa}(\cos(\theta_i)) = K_{\kappa}(\mathbf{x}^T \mathbf{X}_i)$
Case $q = 1$	Di Marzio <i>et al.</i> (2009) estimator. If $\mathbf{x} = (\cos \theta, \sin \theta)$, $\mathbf{X}_i = (\cos \Theta_i, \sin \Theta_i)$, $\mathbf{B}_1 = (-\sin \theta, \cos \theta)^T$, then $\mathbf{B}_1(\mathbf{X}_i - \mathbf{x}) = \sin(\theta - \Theta_i)$	Different from Di Marzio <i>et al.</i> (2009) (usual vs. tangent–normal Taylor expansions)
Bias	$\left rac{b_q(L)}{q} \mathrm{tr} \left[oldsymbol{\mathcal{H}}_m(\mathbf{x}) ight] h^2 ight.$	$rac{b_2(\kappa)}{2q} \mathrm{tr}\left[oldsymbol{\mathcal{H}}_m(\mathbf{x}) ight]$
Variance	$\left rac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^qf(\mathbf{x})}\sigma^2(\mathbf{x}) ight $	$rac{ u_0(\kappa)}{nf(\mathbf{x})}\sigma^2(\mathbf{x})$

Table : Proposals for local linear smoothing.

Alternative proposa

Assessing parametric regression models with directional predictors

	Circular case $(q=1)$							$ \qquad Spherical case \ (q=2)$						
Model	Loc	al cons	tant	_ Lo	Local linear			Loca	al cons	tant	Local linear			
	$h_{ m CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	$ h_{\rm CV} $	$h_{\rm GCV}$	$h_{\rm PI}$		$h_{\rm CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	$h_{ m CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	
M1	0.009	0.009	0.013	0.009	0.009	0.013	(0.003	0.003	0.007	0.003	0.003	0.007	
M2	0.027	0.026	0.041	0.025	0.023	0.068		0.025	0.024	0.063	0.022	0.021	0.068	
M3	0.039	0.037	0.063	0.033	0.031	0.038	(0.038	0.038	0.067	0.030	0.029	0.047	
M4	0.056	0.056	0.253	0.046	0.045	0.274	(0.044	0.044	0.045	0.041	0.040	0.043	
M5	0.040	0.044	0.044	0.027	0.032	0.025	(0.030	0.030	0.065	0.034	0.036	0.042	
M6	0.051	0.050	0.059	0.046	0.048	0.114	(0.030	0.030	0.057	0.031	0.031	0.033	
M7	0.043	0.042	0.320	0.043	0.040	0.317		0.062	0.062	0.062	0.061	0.061	0.060	
M8	0.048	0.048	0.586	0.047	0.047	0.484	(0.161	0.163	0.803	0.167	0.178	0.779	
M9	0.058	0.057	0.793	0.054	0.052	1.068		0.130	0.124	1.095	0.109	0.109	1.368	
M10	0.036	0.036	0.102	0.032	0.031	0.079	(0.111	0.107	0.527	0.107	0.105	0.676	
M11	0.030	0.029	0.094	0.202	0.022	0.040	(0.165	0.160	1.272	0.158	0.130	0.679	
M12	0.059	0.059	0.293	0.081	0.042	0.604	(0.061	0.060	0.073	0.059	0.050	0.054	

Table : Empirical ASEs with n = 250. Significative best combinations of estimator and bandwidth selector are marked in bold. Bandwidth selection

	Circular case $(q = 1)$							$ \qquad Spherical case \ (q=2)$						
Model	Loc	al cons	tant	_ Lo	Local linear			Loca	al cons	tant	Local linear			
	$h_{\rm CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	$ h_{\rm CV} $	$h_{\rm GCV}$	$h_{\rm PI}$	1	$h_{\rm CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	$h_{ m CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	
M1	0.008	0.008	0.017	0.008	0.009	0.018	0	.001	0.001	0.003	0.001	0.001	0.003	
M2	0.046	0.046	0.093	0.044	0.042	0.087	0	0.015	0.015	0.042	0.013	0.013	0.070	
M3	0.065	0.066	0.098	0.056	0.054	0.090	C	0.024	0.024	0.044	0.018	0.018	0.028	
M4	0.077	0.077	0.076	0.074	0.074	0.080	C	0.029	0.029	0.029	0.026	0.026	0.026	
M5	0.056	0.055	0.113	0.064	0.066	0.084	0	.019	0.019	0.042	0.021	0.023	0.023	
M6	0.048	0.049	0.081	0.050	0.049	0.054	0	.021	0.021	0.040	0.022	0.021	0.022	
M7	0.088	0.088	0.082	0.087	0.087	0.084	C	0.046	0.046	0.050	0.045	0.045	0.049	
M8	0.232	0.254	0.802	0.247	0.279	0.753	0	.121	0.121	0.756	0.122	0.125	0.766	
M9	0.199	0.175	1.104	0.170	0.162	1.201	0	0.092	0.090	1.113	0.077	0.076	1.392	
M10	0.167	0.153	0.679	0.183	0.155	0.703	C	080.0	0.079	0.380	0.074	0.073	0.555	
M11	0.246	0.217	1.053	0.542	0.192	0.564	C).121	0.120	1.370	0.115	0.095	0.731	
M12	0.099	0.096	0.118	0.121	0.083	0.096	C	0.042	0.042	0.052	0.040	0.035	0.037	

Table : Empirical ASEs with n = 500. Significative best combinations of estimator and bandwidth selector are marked in bold. Bandwidth selection

	$\label{eq:circular case} \left(q = 1 \right) \qquad $							Spherical case $(q = 2)$					
Model	Loc	al cons	tant	_ Lo	cal line	ear	Loc	al cons	tant	Local linear			
	$h_{\rm CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	$ h_{\rm CV} $	$h_{\rm GCV}$	$h_{\rm PI}$	$ h_{\rm CV} $	$h_{\rm GCV}$	$h_{\rm PI}$	$h_{\rm CV}$	$h_{\rm GCV}$	$h_{\rm PI}$	
M1	0.022	0.024	0.033	0.023	0.023	0.034	0.005	0.005	0.007	0.005	0.005	0.007	
M2	0.063	0.058	0.078	0.055	0.052	0.086	0.016	0.015	0.027	0.014	0.013	0.076	
M3	0.085	0.079	0.124	0.074	0.068	0.083	0.022	0.021	0.037	0.019	0.017	0.022	
M4	0.119	0.117	0.344	0.100	0.100	0.330	0.034	0.033	0.146	0.027	0.026	0.220	
M5	0.071	0.067	0.093	0.058	0.062	0.059	0.022	0.030	0.026	0.015	0.019	0.014	
M6	0.106	0.105	0.116	0.091	0.094	0.183	0.031	0.030	0.036	0.028	0.029	0.087	
M7	0.165	0.162	0.309	0.152	0.149	0.304	0.023	0.023	0.321	0.022	0.022	0.320	
M8	0.091	0.088	0.814	0.099	0.092	0.617	0.030	0.030	0.377	0.028	0.028	0.367	
M9	0.102	0.097	0.854	0.119	0.100	1.052	0.040	0.040	0.761	0.034	0.034	1.041	
M10	0.071	0.070	0.180	0.067	0.064	0.134	0.021	0.021	0.059	0.018	0.018	0.051	
M11	0.091	0.047	0.147	0.331	0.041	0.081	0.023	0.023	0.062	0.082	0.015	0.025	
M12	0.092	0.091	0.409	0.249	0.073	0.800	0.045	0.044	0.202	0.042	0.029	0.478	

Table : Empirical ASEs with n = 500. Significative best combinations of estimator and bandwidth selector are marked in bold. Bandwidth selection

Sketch of the proof Limit distribution of T_n

$$nh^{\frac{q}{2}}\left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right)$$

O Decompose $T_n=(T_{n_1}+T_{n_2}-2T_{n_3})(1+o_{\mathbb{P}}\,(1))$ using the equivalent kernel formulation:

$$T_{n_1} = \int_{\Omega_q} \left(\sum_{i=1}^n L_p^*(\mathbf{x}, \mathbf{X}_i) \left(Y_i - m_{\boldsymbol{\theta}_0}(\mathbf{X}_i) \right) \right)^2 f(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}),$$

$$\begin{split} T_{n_2} &= \int_{\Omega_q} \left(\mathcal{L}_{h,p} \left(m_{\theta_0} - m_{\widehat{\theta}} \right) (\mathbf{x}) \right)^2 f(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}), \\ T_{n_3} &= \int_{\Omega_q} \left(\widehat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p} m_{\theta_0}(\mathbf{x}) \right) \mathcal{L}_{h,p} \left(m_{\theta_0} - m_{\widehat{\theta}} \right) (\mathbf{x}) f(\mathbf{x}) w(\mathbf{x}) \, \omega_q(d\mathbf{x}). \end{split}$$

Sketch of the proof \checkmark Limit distribution of T_n

$$nh^{\frac{q}{2}} \left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}) \right) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right)$$

Decompose $T_n = (T_{n_1} + T_{n_2} - 2T_{n_3})(1 + o_{\mathbb{P}}(1))$ using the equivalent kernel formulation:
$$T_{n_1} = \int_{\Omega_q} \left(\sum_{i=1}^n L_p^*\left(\mathbf{x}, \mathbf{X}_i\right) \left(Y_i - m_{\theta_0}(\mathbf{X}_i)\right) \right)^2 f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}),$$

$$T_{n_2} = \int_{\Omega_q} \left(\mathcal{L}_{h,p}\left(m_{\theta_0} - m_{\widehat{\theta}}\right)(\mathbf{x}) \right)^2 f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}),$$

$$T_{n_3} = \int_{\Omega_q} \left(\widehat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p}m_{\theta_0}(\mathbf{x}) \right) \mathcal{L}_{h,p}\left(m_{\theta_0} - m_{\widehat{\theta}}\right)(\mathbf{x})f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}).$$

$$nh^{\frac{q}{2}}T_{n_2} = o_{\mathbb{P}}\left(1\right) \text{ and } nh^{\frac{q}{2}}T_{n_3} = o_{\mathbb{P}}\left(1\right) \text{ by } \sqrt{n}\text{-consistency of } \widehat{\theta}.$$

Sketch of the proof \bullet Limit distribution of T_n

$$\begin{split} nh^{\frac{q}{2}} \left(T_n - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q} \int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) & \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, 2\nu^2\right) \\ \bullet \text{ Decompose } T_n &= (T_{n_1} + T_{n_2} - 2T_{n_3})(1 + o_{\mathbb{P}}(1)) \text{ using the equivalent kernel formulation:} \\ T_{n_1} &= \int_{\Omega_q} \left(\sum_{i=1}^n L_p^*(\mathbf{x}, \mathbf{X}_i)\left(Y_i - m_{\theta_0}(\mathbf{X}_i)\right)\right)^2 f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}), \\ T_{n_2} &= \int_{\Omega_q} \left(\mathcal{L}_{h,p}\left(m_{\theta_0} - m_{\widehat{\theta}}\right)(\mathbf{x})\right)^2 f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}), \\ T_{n_3} &= \int_{\Omega_q} \left(\widehat{m}_{h,p}(\mathbf{x}) - \mathcal{L}_{h,p}m_{\theta_0}(\mathbf{x})\right)\mathcal{L}_{h,p}\left(m_{\theta_0} - m_{\widehat{\theta}}\right)(\mathbf{x})f(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x}). \\ \bullet nh^{\frac{q}{2}}T_{n_2} &= o_{\mathbb{P}}\left(1\right) \text{ and } nh^{\frac{q}{2}}T_{n_3} &= o_{\mathbb{P}}\left(1\right) \text{ by } \sqrt{n}\text{-consistency of } \widehat{\theta}. \\ \bullet \text{ Split } T_{n_1} &= T_{n_1}^{(1)} + T_{n_1}^{(2)} + 2T_{n_1}^{(3)} \text{ where } nh^{\frac{q}{2}}T_{n_1}^{(2)} &= o_{\mathbb{P}}\left(1\right) \text{ and } nh^{\frac{q}{2}}T_{n_1}^{(3)} &= o_{\mathbb{P}}\left(1\right). \text{ Finally, by de Jong (1987)'s CLT, \\ nh^{\frac{q}{2}}\left(T_{n_1}^{(1)} - \frac{\lambda_q(L^2)\lambda_q(L)^{-2}}{nh^q}\int_{\Omega_q} \sigma^2(\mathbf{x})w(\mathbf{x})\,\omega_q(d\mathbf{x})\right) \xrightarrow{d} \mathcal{N}\left(0, 2\nu^2\right). \end{split}$$

Figure : Deviations Δ_1 , Δ_2 and Δ_3 (from left to right, first three columns) and conditional standard deviation for the heteroskedastic noise (fourth column). (Simulation study)

Theorem (Bootstrap consistency) • Calibration in practice

Under conditions LL1–LL4, GF1–GF5 and under the hypothesis H_{1L} ,

$$nh^{\frac{q}{2}}\left(T_{n}^{*}-\frac{\lambda_{q}(L^{2})\lambda_{q}(L)^{-2}}{nh^{q}}\int_{\Omega_{q}}\sigma^{2}(\mathbf{x})w(\mathbf{x})\,\omega_{q}(d\mathbf{x})\right)\overset{d}{\longrightarrow}\mathcal{N}\left(0,2\nu^{2}\right)$$

with probability one.

► A **bootstrap** analogue of **condition** GF1 is required:

GF5 Under H_{1L} , and for $\mathbf{X}_1, \ldots, \mathbf{X}_n$, there exists an estimator $\widehat{\boldsymbol{\theta}}^*$ such that $\widehat{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}}^* = \mathcal{O}_{\mathbb{P}^*}\left(n^{-\frac{1}{2}}\right)$.

Figure : Empirical sizes for $\alpha = 0.10$ with p = 0 (upper row) and p = 1 (lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500.

Model	Regression function	Densi	ty Noise Deviation
M1	$m(\mathbf{x}) = m$	D1	$ $ Het. $ $ 0.5 $\Delta_1(\mathbf{x})$
M2	$m(\mathbf{x}) = m + \boldsymbol{\eta}^T \mathbf{x}$	D2	\mid Het. $\mid -0.25\Delta_1(\mathbf{x})$
M3	$m(\mathbf{x}) = m + \boldsymbol{\eta}^T \mathbf{x} + \boldsymbol{\gamma}^T (x_1^2, \dots, x_q^2)$	D3	$ $ Het. $ $ $-\Delta_1(\mathbf{x})$
M4	$m(\mathbf{x}) = m + a(x_{q+1}^2 - x_q^3) + bx_1x_2$	D4	\mid Het. \mid -0.25 $\Delta_1(\mathbf{x})$
M5	$m(\mathbf{x}) = m + ax_1^4 + b\left(\frac{3}{2} - x_1\right)^{-\frac{1}{2}}$	D5	$ $ Het. $ $ $-\Delta_2(\mathbf{x})$
M6	$m(\mathbf{x}) = ae^{bx_2} \log(cx_{q+1} x_1) + d \max(x_1 , x_2)$	D6	Het. $-3\Delta_2(\mathbf{x})$
M7	$\begin{split} m(\mathbf{x}) &= m + d_1 f_{vM}(\mathbf{x}, (0_q, 1), \kappa_1) \\ &- d_2 f_{Ca}(\mathbf{x}, (0_q, 1), \kappa_2) \end{split}$	D1	$\left Hom. \right -0.3\Delta_2(\mathbf{x})$
M8	$m(\mathbf{x}) = m + a f_{SN}(\max(-\mathbf{x}), b, c, d)$	D2	$ Hom. - 0.4\Delta_2(\mathbf{x})$
M9	$m(\mathbf{x}) = m + af_{SN}(\prod_{i=1}^{q+1} x_i, b, c, d)$	D3	$ Hom. 0.1\Delta_3(\mathbf{x})$
M10	$m(\mathbf{x}) = m + a\sin(2\pi x_2) + b\cos(2\pi x_1)$	D4	$ Hom. \ 0.25\Delta_3(\mathbf{x})$
M11	$m(\mathbf{x}) = m + a\sin(2\pi bx_1 x_{q+1})$	D5	$ Hom. - 1.5\Delta_3(\mathbf{x})$
M12	$m(\mathbf{x}) = \overline{m + a \sin(2\pi b (2 + x_q + 1)^{-1})}$	D6	$ Hom. 0.3\Delta_3(\mathbf{x})$

Table : Simulation scenarios. • Models

E. García-Portugués et al.

Assessing parametric regression models with directional predictors

Figure : Empirical sizes for $\alpha = 0.01$ with p = 0 (upper row) and p = 1 (lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500. (Simulation

USC INTERSENCE DE SANTIAGO DE COMPOSITIA