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Introduction

hectares. Along coastal areas, watersheds smaller than 40,000
hectares were included as long as they contained at least 25 fires.
The final map was edited to exclude international watersheds,
since we do not have the perimeters of fires occurring in the Span-
ish portion of these watersheds. This resulted in a total of 102
watersheds, with sizes varying from 10,400 hectares to 277,835
hectares. Each fire was considered belonging to the watershed con-
taining its centroid. The 102 watersheds correspond to 83% of the
Portuguese mainland territory and contain 30,459 fire perimeters,
accounting for 90% of the 1975–2005 overall area burned. The
number of fires per watershed ranges from 25 to 2498, while the
area burned varies from 500 hectares to 380,900 hectares (Fig. 2).

2.3. Orientation vs direction

Circular data refers to data measured on an angular scale, in de-
grees or radians. There are two kinds of circular data, vectorial
(directional) and axial (orientational) circular data. Vectorial data
consists of a directed line where both the departure point and
direction of movement are known, e.g., the vanishing directions
of homing pigeons. Axial data consists of an axis or undirected line,
where either end of the line can be taken as the direction of move-
ment, such as a fracture in a rock exposure (Fisher, 1993).

The analysis of circular data requires the definition of an origin,
and a sense of rotation – clockwise or counterclockwise
(Jammalamadaka and Sengupta, 2001). In this work we computed
the orientation of each watershed and fire event. These orienta-
tions correspond to axial data, since we lack information on igni-
tion points or the actual fire spread direction. We considered

true north (N) as the origin and measured orientations clockwise.
Given that all orientations are axial, it follows that 0� (North, N)
is equivalent to 180� (South, S) (Fig. 3). For the sake of simplicity,
we shall refer to axial measurements in the compass
classifications: N/S, NE/SW, E/W and SE/NW, which can be re-
garded as equivalent to the orientations S/N, SW/NE, W/E and
NW/SE, respectively.

Fig. 3. Classification of axial data in terms of compass orientation. For each fire and
watershed perimeter an orientation value, hor, is calculated. Orientation values
range between 0� and 180� and were classified into compass classification as a
function of hor as follows: N/S ,hor2[0;22.5]^hor 2]157.5;180]; NE/
SW,hor2]22.5; 67.5]; E/W ,hor2]67.5;112.5]; SE/NW ,hor2]112.5;157.5]. Differ-
ent shades of grey distinguish the range of the intervals described above.

Fig. 4. Fire perimeter vertices are represented by its X and Y coordinates, in a bi-dimensional space. From all possible axis passing through the object center of mass, the first
principal component axis (PC1 axis), corresponds to the axis that maximizes the variance among projection of all points that constitute the object boundary and also reflects
the longest diagonal of the object. The second principal component axis (PC2 axis) is orthogonal to the PC1 axis. In this example principal component analysis of the vertices
resulted in a PC1 axis with NE/SW (31.8�) orientation. This orientation is measured considering True North as 0� and rotating clockwise.
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Figure : Fire orientation.

I Data: orientations (X) and
log–burnt areas (Y ) of 26870
wildfires in Portugal during
1985–2005.

I What is the relationship m
between X and Y ?

Y = m(X) + σ(X)ε

I Two approaches for studying m:

I Estimate m nonparametrically.
I Check if m can be specified as a

certain parametric model.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying
geographical patterns of wildfire orientation: A watershed-based analysis.
Forest Ecol. Manag., 264, 98–107.
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Aim of this work

Develop new nonparametric methods for the regression with
directional predictor X and linear response Y :

1 Nonparametric estimation of the regression function m,

{(Xi, Yi)}ni=1 =⇒ m̂h.

2 Goodness–of–fit test for parametric regression models:

H0 : m ∈MΘ = {mθ : θ ∈ Θ} .
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Estimator

I Denote the q–sphere by Ωq =
{
x ∈ Rq+1 : ||x|| = 1

}
.

I Let (X, Y ) be a random variable with support in Ωq × R.

I Consider the regression model

Y = m(X) + σ(X)ε with

{
m(x) = E [Y |X = x] ,
σ2(x) = Var [Y |X = x] ,

and with ε ⊥ X, E [ε] = 0 and Var [ε] = 1.

I We want to estimate m nonparametrically from {(Xi, Yi)}ni=1.

I We will require Taylor expansions, so the first condition is

LL1 Extend m and f from Ωq to Rq+1\ {0} by m (x) ≡ m (x/ ||x||) and
f (x) ≡ f (x/ ||x||). m is third and f is twice continuously
differentiable and f is bounded away from zero.
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I Let x,Xi ∈ Ωq. The one term Taylor expansion of m is:

m(Xi) = m(x) + ∇m(x)T (Xi − x) +O
(
||Xi − x||2

)

I This motivates the weighted minimum least squares problem (p = 0
for local constant and p = 1 for local linear)

min
β∈Rq+1

n∑
i=1

(
Yi − β0 − δp,1 (β1, . . . , βq)

T
BT
q (Xi − x)

)2

Lh(x,Xi).

I The solution is given by

m̂h,p(x) = β̂0 = eT1,p

(
X T

x,pWxX x,p

)−1

X T
x,pWxY =

n∑
i=1

Wn
p (x,Xi)Yi,

where Wx = diag (Lh(x,X1), . . . , Lh(x,Xn)) and

Y =

 Y1

...
Yn

 , X x,0 =

 1
...
1

 , X x,1 =

 1 (X1 − x)TBq

...
...

1 (Xn − x)TBq


n×q

.
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Alternative proposal Technical details

Di Marzio, M., Panzera, A., and Taylor, C. C. (2014). Nonparametric
regression for spherical data J. Amer. Statist. Assoc. (to appear).

I Taylor expansion based on the tangent–normal decomposition
Xi = x cos(θx,i) + ξx,i sin(θx,i), where θx,i ∈ [0, 2π), x, ξx,i ∈ Ωq
and ξx,i ⊥ x:

m(Xi) = m(x) + θx,iξ
T
x,i∇m(x) +O

(
θ2
x,i

)
.

I Weighted minimum least squares problem

min
β∈Rq+2

n∑
i=1

(
Yi − β0 − (β1, . . . , βq+1)T θx,iξx,i

)2

Kκ(cos(θx,i)),

X x,1 =

 1 θx,1ξ
T
x,1

...
...

1 θx,nξ
T
x,n


n×(q+1)

,Wx = diag (Kκ(cos(θx,1)), . . . ,Kκ(cos(θx,n))) .

I X T
x,1WxX x,1 is singular, so a pseudo–inverse is required.

I Results for bias, variance and normality are equivalent to ours.
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Remarkable cases

1 Local constant (p = 0), the Nadaraya–Watson estimator:

m̂h,0(x) =

n∑
i=1

Wn
p (x,Xi)Yi =

∑n
i=1 Lh(x,Xi)Yi∑n
j=1 Lh(x,Xj)

.

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the
iterated logarithm for kernel estimator of regression function based on
directional data. Chinese Ann. Math. Ser. B, 21(4):489–498.

9 / 25
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Remarkable cases

1 Local constant (p = 0), the Nadaraya–Watson estimator:

m̂h,0(x) =

n∑
i=1

Wn
p (x,Xi)Yi =

∑n
i=1 Lh(x,Xi)Yi∑n
j=1 Lh(x,Xj)

.

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the
iterated logarithm for kernel estimator of regression function based on
directional data. Chinese Ann. Math. Ser. B, 21(4):489–498.

2 Circular case (q = 1): set x = (cos θ, sin θ), Xi = (cos Θi, sin Θi)

and κ = h−2, for θ,Θi ∈ [0, 2π). For p = 1, B1 = (− sin θ, cos θ)
T

and B1 ⊥ x:

X x,1 =

 1 (X1 − x)TB1

...
...

1 (Xn − x)TB1

=

 1 sin(θ −Θ1)
...

...
1 sin(θ −Θn)

 .
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Remarkable cases

1 Local constant (p = 0), the Nadaraya–Watson estimator:

m̂h,0(x) =

n∑
i=1

Wn
p (x,Xi)Yi =

∑n
i=1 Lh(x,Xi)Yi∑n
j=1 Lh(x,Xj)

.

Wang, X., Zhao, L., and Wu, Y. (2000). Distribution free laws of the
iterated logarithm for kernel estimator of regression function based on
directional data. Chinese Ann. Math. Ser. B, 21(4):489–498.

2 Circular case (q = 1): set x = (cos θ, sin θ), Xi = (cos Θi, sin Θi)

and κ = h−2, for θ,Θi ∈ [0, 2π). For p = 1, B1 = (− sin θ, cos θ)
T

and B1 ⊥ x:

min
β∈R2

n∑
i=1

(Yi − β0 − β1 sin(θ −Θi))
2 Lκ (κ(1− cos(θ −Θi)) .

Di Marzio, M., Panzera, A., and Taylor, C. C. (2009). Local polynomial
regression for circular predictors. Statist. Probab. Lett.,
79(19):2066–2075.
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Properties

Theorem (Conditional bias and variance)
Under assumptions LL1–LL4, for x ∈ Ωq (uniformly),

E [m̂h,p(x)|X1, . . . ,Xn] =m(x) + bq(L)Bp(x)h2 + oP
(
h2) ,

Var [m̂h,p(x)|X1, . . . ,Xn] =
λq(L

2)λq(L)−2

nhqf(x)
σ2(x) + oP

(
(nhq)−1

)
,

where Bp(x) =

{
2
q

∇f(x)T

f(x)
∇m(x) + 1

q
tr [Hm(x)] , p = 0,

1
q
tr [Hm(x)] , p = 1.

I Conditions

LL2 σ2 is uniformly continuous and bounded away from zero.
LL3 The kernel L : [0,∞)→ [0,∞) is a bounded function with

exponential decay (L(r) ≤Me−αr).
LL4 The positive sequence h = hn satisfies h→ 0 and nhq →∞.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least
squares regression. Ann. Statist., 22(3):1346–1370.
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I From the conditional bias and variance, expansions for conditional
MSE, MISE and hAMISE bandwidth follow. Simulations bandwidth selection

Corollary (Equivalent kernel, as in Fan and Gijbels (1996))
Under assumptions LL1–LL4, the weights in the estimator
m̂h,p(x) =

∑n
i=1W

n
p (x,Xi)Yi at x ∈ Ωq satisfy (uniformly)

Wn
p (x,Xi) =

1

nhqλq(L)f(x)
L

(
1− xTXi

h2

)
(1 + oP (1)) .

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications.
Chapman & Hall.

Theorem (Asymptotic normality)
Under assumptions LL1–LL4, for x ∈ Ωq such that for a δ > 0
E
[
(Y −m(X))2+δ|X = x

]
<∞,

√
nhq

(
m̂h,p(x)−m(x)− bq(L)Bp(x)h2)

d−→ N
(

0,
λq(L

2)λq(L)−2

f(x)
σ2(x)

)
.
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Testing a parametric model

I We want to check H0 : m ∈MΘ = {mθ : θ ∈ Θ}.
I No test available in the literature for checking this hypothesis.

González-Manteiga, W. and Crujeiras, R. M. (2013). An updated review
of goodness-of-fit tests for regression models. TEST, 22(3):361–411.

I We consider as statistic the smoothed weighted L2–distance
between m̂h,p and mθ̂:

Tn =

∫
Ωq

(
m̂h,p(x)− Lh,pmθ̂(x)

)2
f̂h(x)w(x)ωq(dx).

where Lh,pm(x) =
∑n
i=1W

p
n (x,Xi)m(Xi).

Alcalá, J. T., Cristóbal, J. A., and González-Manteiga, W. (1999).
Goodness-of-fit test for linear models based on local polynomials. Statist.
Probab. Lett., 42(1):39–46.

Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus
parametric regression fits. Ann. Statist., 21(4):1926–1947.
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E. Garćıa–Portugués et al. Assessing parametric regression models with directional predictors

N



Limit distribution

Theorem (Limit distribution of Tn) Sketch of the proof

Under conditions LL1–LL4, GF1–GF2 and under H0 : m ∈MΘ,

nh
q
2

(
Tn −

λq(L
2)λq(L)−2

nhq

∫
Ωq

σ2(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2) .

I Conditions

GF1 Under H0, there exists a θ̂ such that θ̂ − θ0 = OP

(
n−

1
2

)
.

GF2 mθ is continously differentiable as a function of θ, being this
derivative also continuous for x ∈ Ωq.
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Limit distribution

Theorem (Limit distribution of Tn) Sketch of the proof

Under conditions LL1–LL4, GF1–GF2 and under H0 : m ∈MΘ,

nh
q
2

(
Tn −

λq(L
2)λq(L)−2

nhq

∫
Ωq

σ2(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2) .

I Conditions

I Constants

ν2 =

∫
Ωq

σ4(x)w(x)2 ωq(dx)

× γqλq(L)−4

∫ ∞
0

r
q
2
−1

{∫ ∞
0

ρ
q
2
−1L(ρ)ϕq(r, ρ) dρ

}2

dr

ϕq(r, ρ) =

 L
(
r + ρ− 2(rρ)

1
2

)
+ L

(
r + ρ+ 2(rρ)

1
2

)
, q = 1,∫ 1

−1

(
1− u2

) q−3
2 L

(
r + ρ− 2u(rρ)

1
2

)
du, q ≥ 2.
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Limit distribution

Theorem (Limit distribution of Tn) Sketch of the proof

Under conditions LL1–LL4, GF1–GF2 and under H0 : m ∈MΘ,

nh
q
2

(
Tn −

λq(L
2)λq(L)−2

nhq

∫
Ωq

σ2(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2) .

I Conditions

I Constants

ν2 =

∫
Ωq

σ4(x)w(x)2 ωq(dx)

× γqλq(L)−4

∫ ∞
0

r
q
2
−1

{∫ ∞
0

ρ
q
2
−1L(ρ)ϕq(r, ρ) dρ

}2

dr

I If L is the von Mises kernel, ν2 =
∫

Ωq
σ4(x)w(x)2 ωq(dx)× (8π)−

q
2 .
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Power under local alternatives

I We consider a function g : Ωq −→ R such that g /∈MΘ and the
Pitman local alternative:

H1L : m(x) = mθ0(x) +
(
nh

q
2

)− 1
2 g(x), ∀x ∈ Ωq.

Theorem (Power under local alternatives)
Under conditions LL1–LL4, GF2–GF4 and under H1L,

nh
q
2

(
Tn −

λq(L
2)λq(L)−2

nhq

∫
Ωq

σ2(x)w(x)ωq(dx)

)
d−→ N

(∫
Ωq

g(x)2f(x)w(x)ωq(dx), 2ν2

)
.

I Conditions

GF3 Under H1L, there exists a θ̂ such that θ̂ − θ0 = OP

(
n−

1
2

)
.

GF4 The function g is continuous.
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Calibration in practice

Algorithm (Testing procedure) Bootstrap consistency

Let {(Xi, Yi)}ni=1 be a random sample. To test H0 : m ∈MΘ:

1 Compute θ̂, and set ε̂i = Yi − m̂h,p(Xi), i = 1, . . . , n.

2 Compute

Tn =

∫
Ωq

(
m̂h,p(x)− Lh,pmθ̂(x)

)2
f̂h(x)w(x)ωq(dx).

3 Bootstrap strategy. For b = 1, . . . , B:
I Set Y ∗i = mθ̂(Xi) + ε̂iVi, i = 1, . . . , n, where Vi are golden

binary random variables.
I Compute θ̂

∗
from {(Xi, Y

∗
i )}ni=1 and set

T ∗bn =

∫
Ωq

(
m̂∗h,p(x)− Lh,pmθ̂

∗(x)
)2
f̂h(x)w(x)ωq(dx).

4 Estimate the p–value as #
{
T ∗bn ≤ Tn

}
/B.
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Simulation study

Scenarios: Y = mθ(X) + σ(X)ε.

I Density of X: 6 different directional densities.

I Regression function mθ: 12 new directional–linear models.

I Noise ε ∼ N (0, 1), σ(x) constant and variable (heteroskedastic).

I Deviations from H0 : m ∈MΘ constructed by sampling from
mδ(x) = mθ0(x) + δ∆(x). Details

Simulation setting:

I Sample sizes n = 100, 250, 500, dimensions q = 1, 2, 3, local
constant (p = 0) and linear (p = 1) estimators.

I B = 1000 bootstrap replicates and M = 1000 Monte Carlo trials for
evaluating the empirical size/power of the test.

I Bandwidth grid for exploring its effect.
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Figure : Densities D1 to D6 for the circular and spherical cases.
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Figure : Models M1 to M12 for the circular case (q = 1). Details
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Figure : Models M1 to M12 for the spherical case (q = 2). Details
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Figure : Empirical sizes for α = 0.05 with p = 0 (upper row) and p = 1
(lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500. More sizes
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Figure : Powers for α = 0.05 with p = 0 (blue) and p = 1 (green), for
q = 1 and n = 250. More powers
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Wildfire orientation

I Data: 102 averaged orientations
and log–burnt areas of the
wildfires in each watershed of
Portugal in 1985–2005.
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Figure : Wildfires data with two
parametric fits and a local linear fit.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying
geographical patterns of wildfire orientation: A watershed-based analysis.
Forest Ecol. Manag., 264, 98–107.
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Wildfire orientation

I Data: 102 averaged orientations
and log–burnt areas of the
wildfires in each watershed of
Portugal in 1985–2005.

I No effect model:

m(x) = c.

I FDR p–values: 0.027 (loc.
const.) and 0.047 (loc. lin.).

I Evidence to reject the model.
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Figure : p–values of the goodness–of–fit
test for no effect model.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying
geographical patterns of wildfire orientation: A watershed-based analysis.
Forest Ecol. Manag., 264, 98–107.
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Wildfire orientation

I Data: 102 averaged orientations
and log–burnt areas of the
wildfires in each watershed of
Portugal in 1985–2005.

I Linear model:

m(x) = c+ βTx

I FDR p–values: 0.230 (loc.
const.) and 0.204 (loc. lin.).

I No evidence to reject the
model.
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Figure : p–values of the goodness–of–fit
test for linear model.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying
geographical patterns of wildfire orientation: A watershed-based analysis.
Forest Ecol. Manag., 264, 98–107.

24 / 25
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Wildfire orientation

I Data: 102 averaged orientations
and log–burnt areas of the
wildfires in each watershed of
Portugal in 1985–2005.

I Linear model:

m(θ) = c+β1 cos(θ)+β2 sin(θ)

I FDR p–values: 0.230 (loc.
const.) and 0.204 (loc. lin.).

I No evidence to reject the
model.
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Figure : p–values of the goodness–of–fit
test for linear model.

Barros, A. M. G., Pereira, J. M. C., and Lund, U. J. (2012). Identifying
geographical patterns of wildfire orientation: A watershed-based analysis.
Forest Ecol. Manag., 264, 98–107.
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Some notes of caution in smoothing

1 Holes in the support and local linear estimation. Local linear
smoothing can be worse than local constant smoothing when there
are holes in the support.
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Figure : Local constant and linear estimators with predictor for
samples with areas with low density.
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Some notes of caution in smoothing

1 Holes in the support and local linear estimation.

2 Nonparametric wild bootstrap: ε̂i = Yi − m̂h,p(Xi). Versus the
parametric one that we have used: ε̂i = Yi −mθ̂(Xi).
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Figure : Sizes for nonparametric and parametric wild bootstraps.
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Some notes of caution in smoothing

1 Holes in the support and local linear estimation.

2 Nonparametric wild bootstrap: ε̂i = Yi − m̂h,p(Xi).

3 Estimation bandwidths for testing. Bandwidths arising from
estimation criteria are not always a reasonable option.
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Figure : Sizes for averaged estimation bandwidths for p = 0 and p = 1.
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Concept Our proposal Di Marzio et al. (2014)

Taylor
expansion

m(Xi) ≈ m(x)
+∇m(x)TBqBTq (Xi − x)

m(Xi) ≈ m(x)+θx,iξ
T
x,i∇m(x),

Xi = x cos(θx,i) + ξx,i sin(θx,i)

Xx,1’s
i–th row

(
1, Bq(Xi − x)T

)
q+1

(
1, θx,iξ

T
x,i

)
q+2

Bandwidth h = κ−
1
2 κ = h−2

Kernel Lh(x,Xi)=ch,q(L)L
(

1−xTXi
h2

)
Kκ(cos(θi)) = Kκ(xTXi)

Case
q = 1

Di Marzio et al. (2009)
estimator. If x = (cos θ, sin θ),

Xi = (cos Θi, sin Θi),

B1 = (− sin θ, cos θ)T , then
B1(Xi − x) = sin(θ −Θi)

Different from Di Marzio et al.
(2009) (usual vs. tangent–normal

Taylor expansions)

Bias
bq(L)

q
tr [Hm(x)]h2 b2(κ)

2q
tr [Hm(x)]

Variance λq(L2)λq(L)−2

nhqf(x)
σ2(x)

ν0(κ)
nf(x)

σ2(x)

Table : Proposals for local linear smoothing. Alternative proposal
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Model
Circular case (q = 1) Spherical case (q = 2)

Local constant Local linear Local constant Local linear

hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI

M1 0.009 0.009 0.013 0.009 0.009 0.013 0.003 0.003 0.007 0.003 0.003 0.007
M2 0.027 0.026 0.041 0.025 0.023 0.068 0.025 0.024 0.063 0.022 0.021 0.068
M3 0.039 0.037 0.063 0.033 0.031 0.038 0.038 0.038 0.067 0.030 0.029 0.047
M4 0.056 0.056 0.253 0.046 0.045 0.274 0.044 0.044 0.045 0.041 0.040 0.043
M5 0.040 0.044 0.044 0.027 0.032 0.025 0.030 0.030 0.065 0.034 0.036 0.042
M6 0.051 0.050 0.059 0.046 0.048 0.114 0.030 0.030 0.057 0.031 0.031 0.033
M7 0.043 0.042 0.320 0.043 0.040 0.317 0.062 0.062 0.062 0.061 0.061 0.060
M8 0.048 0.048 0.586 0.047 0.047 0.484 0.161 0.163 0.803 0.167 0.178 0.779
M9 0.058 0.057 0.793 0.054 0.052 1.068 0.130 0.124 1.095 0.109 0.109 1.368

M10 0.036 0.036 0.102 0.032 0.031 0.079 0.111 0.107 0.527 0.107 0.105 0.676
M11 0.030 0.029 0.094 0.202 0.022 0.040 0.165 0.160 1.272 0.158 0.130 0.679
M12 0.059 0.059 0.293 0.081 0.042 0.604 0.061 0.060 0.073 0.059 0.050 0.054

Table : Empirical ASEs with n = 250. Significative best combinations of
estimator and bandwidth selector are marked in bold. Bandwidth selection
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Model
Circular case (q = 1) Spherical case (q = 2)

Local constant Local linear Local constant Local linear

hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI

M1 0.008 0.008 0.017 0.008 0.009 0.018 0.001 0.001 0.003 0.001 0.001 0.003
M2 0.046 0.046 0.093 0.044 0.042 0.087 0.015 0.015 0.042 0.013 0.013 0.070
M3 0.065 0.066 0.098 0.056 0.054 0.090 0.024 0.024 0.044 0.018 0.018 0.028
M4 0.077 0.077 0.076 0.074 0.074 0.080 0.029 0.029 0.029 0.026 0.026 0.026
M5 0.056 0.055 0.113 0.064 0.066 0.084 0.019 0.019 0.042 0.021 0.023 0.023
M6 0.048 0.049 0.081 0.050 0.049 0.054 0.021 0.021 0.040 0.022 0.021 0.022
M7 0.088 0.088 0.082 0.087 0.087 0.084 0.046 0.046 0.050 0.045 0.045 0.049
M8 0.232 0.254 0.802 0.247 0.279 0.753 0.121 0.121 0.756 0.122 0.125 0.766
M9 0.199 0.175 1.104 0.170 0.162 1.201 0.092 0.090 1.113 0.077 0.076 1.392

M10 0.167 0.153 0.679 0.183 0.155 0.703 0.080 0.079 0.380 0.074 0.073 0.555
M11 0.246 0.217 1.053 0.542 0.192 0.564 0.121 0.120 1.370 0.115 0.095 0.731
M12 0.099 0.096 0.118 0.121 0.083 0.096 0.042 0.042 0.052 0.040 0.035 0.037

Table : Empirical ASEs with n = 500. Significative best combinations of
estimator and bandwidth selector are marked in bold. Bandwidth selection
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Model
Circular case (q = 1) Spherical case (q = 2)

Local constant Local linear Local constant Local linear

hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI hCV hGCV hPI

M1 0.022 0.024 0.033 0.023 0.023 0.034 0.005 0.005 0.007 0.005 0.005 0.007
M2 0.063 0.058 0.078 0.055 0.052 0.086 0.016 0.015 0.027 0.014 0.013 0.076
M3 0.085 0.079 0.124 0.074 0.068 0.083 0.022 0.021 0.037 0.019 0.017 0.022
M4 0.119 0.117 0.344 0.100 0.100 0.330 0.034 0.033 0.146 0.027 0.026 0.220
M5 0.071 0.067 0.093 0.058 0.062 0.059 0.022 0.030 0.026 0.015 0.019 0.014
M6 0.106 0.105 0.116 0.091 0.094 0.183 0.031 0.030 0.036 0.028 0.029 0.087
M7 0.165 0.162 0.309 0.152 0.149 0.304 0.023 0.023 0.321 0.022 0.022 0.320
M8 0.091 0.088 0.814 0.099 0.092 0.617 0.030 0.030 0.377 0.028 0.028 0.367
M9 0.102 0.097 0.854 0.119 0.100 1.052 0.040 0.040 0.761 0.034 0.034 1.041

M10 0.071 0.070 0.180 0.067 0.064 0.134 0.021 0.021 0.059 0.018 0.018 0.051
M11 0.091 0.047 0.147 0.331 0.041 0.081 0.023 0.023 0.062 0.082 0.015 0.025
M12 0.092 0.091 0.409 0.249 0.073 0.800 0.045 0.044 0.202 0.042 0.029 0.478

Table : Empirical ASEs with n = 500. Significative best combinations of
estimator and bandwidth selector are marked in bold. Bandwidth selection
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Sketch of the proof Limit distribution of Tn
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−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 0 1 2

Figure : Deviations ∆1, ∆2 and ∆3 (from left to right, first three
columns) and conditional standard deviation for the heteroskedastic noise
(fourth column). Simulation study
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Theorem (Bootstrap consistency) Calibration in practice

Under conditions LL1–LL4, GF1–GF5 and under the hypothesis H1L,

nh
q
2

(
T ∗n −

λq(L
2)λq(L)−2

nhq

∫
Ωq

σ2(x)w(x)ωq(dx)

)
d−→ N

(
0, 2ν2)

with probability one.

I A bootstrap analogue of condition GF1 is required:

GF5 Under H1L, and for X1, . . . ,Xn, there exists an estimator θ̂
∗

such

that θ̂ − θ̂
∗

= OP∗
(
n−

1
2

)
.
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Figure : Empirical sizes for α = 0.10 with p = 0 (upper row) and p = 1
(lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500. Simulation
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Model Regression function Density Noise Deviation

M1 m(x) = m D1 Het. 0.5∆1(x)

M2 m(x) = m+ ηTx D2 Het. −0.25∆1(x)

M3 m(x) = m+ ηTx + γT (x2
1, . . . , x

2
q) D3 Het. −∆1(x)

M4 m(x) = m+ a(x2
q+1 − x3

q) + bx1x2 D4 Het. −0.25∆1(x)

M5 m(x) = m+ ax4
1 + b

(
3
2
− x1

)− 1
2 D5 Het. −∆2(x)

M6 m(x) = aebx2 log(cxq+1 |x1|)
+dmax(|x1| , |x2|)

D6 Het. −3∆2(x)

M7 m(x) = m+ d1fvM (x, (0q , 1), κ1)
−d2fCa(x, (0q , 1), κ2)

D1 Hom. −0.3∆2(x)

M8 m(x) = m+ afSN (max(−x), b, c, d) D2 Hom. −0.4∆2(x)

M9 m(x) = m+ afSN (
∏q+1
i=1 xi, b, c, d) D3 Hom. 0.1∆3(x)

M10 m(x) = m+ a sin(2πx2) + b cos(2πx1) D4 Hom. 0.25∆3(x)

M11 m(x) = m+ a sin(2πbx1xq+1) D5 Hom. −1.5∆3(x)

M12 m(x) = m+ a sin
(
2πb (2 + xq+1)−1 ) D6 Hom. 0.3∆3(x)

Table : Simulation scenarios. Models
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Figure : Empirical sizes for α = 0.01 with p = 0 (upper row) and p = 1
(lower row). Columns: q = 1, 2, 3 and n = 100, 250, 500. Simulation
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Figure : Empirical powers for α = 0.05 with p = 0 (blue) and p = 1
(green), for q = 1 and n = 100. Simulation
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Figure : Empirical powers for α = 0.05 with p = 0 (blue) and p = 1
(green), for q = 2 and n = 250. Simulation
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Figure : Empirical powers for α = 0.05 with p = 0 (blue) and p = 1
(green), for q = 3 and n = 500. Simulation
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