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OUTLINE

Local polynomial estimators for

• circular-linear regression
• linear-circular regression
• circular-circular regression
• spherical-linear regression
• spherical-spherical regression

Applications
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CIRCULAR PREDICTOR: THE MODEL

Given a set {(Θi ,Yi), i = 1, . . . ,n} of independent copies of
a [0, 2π)× R-valued random vector (Θ,Y ), assume

Yi = m(Θi) + σ(Θi)εi , i = 1, . . . ,n

where εis are i.i.d. rr. vv., independent from the Θis, with
E[εi ] = 0, Var[εi ] = 1.
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A SERIES EXPANSION FOR PERIODIC FUNCTIONS

Assuming that m is smooth enough:

m(φ) =

p∑
j=0

m(j)(θ) sinj(φ− θ)

j!
+ O(sin(φ− θ)p+1),

for φ in a neighborhood of angle θ.

Above expansion enjoys a Taylor series interpretation:

sin(φ− θ) ' φ− θ for φ→ θ.
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CIRCULAR KERNELS I

A circular kernel Kk , with concentration parameter k > 0, is
a real function such that

i) it admits an uniformly convergent Fourier series, i.e.

Kk(θ) =
1 + 2

∑∞
j=1 γj(k) cos(jθ)

2π
,

ii) as k increases
∫ ε
−ε |Kk(θ)|dθ tends to 1 for small ε > 0 ;

iii) letting ηj(Kk) :=
∫ π
−π sinj(θ)Kk(θ)dθ , then

η0(Kk) = 1 , ηj(Kk) = 0 for 0 < j < r , and ηr (Kk) 6= 0 .
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CIRCULAR KERNELS II

• The concentration parameter k determines which part
of the sample contributes to the estimation.

• It is spatial in nature, emphasizing the role of the obser-
vations which are closer to the estimation point.

Many circular densities are second-order circular kernels.

• von Mises;
• Wrapped Normal;
• Wrapped Cauchy;
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LOCAL POLYNOMIALS FOR CIRCULAR PREDICTORS

A pth degree local polynomial estimator for m(θ) is the so-
lution for β0 of

argmin
{β0,β1,...,βp}

n∑
i=1

Yi −
p∑

j=0

sinj(Θi − θ)βj

j!


2

Kk(Θi − θ),

taking the form

m̂(θ; p) =
n∑

i=1

YiWi(θ),

where Wi is a weight function depending on Kk(Θi − θ)
and Θi . (Obviously) It is differently structured in the cases
p = 0 and p = 1.
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ASYMPTOTIC MEAN SQUARED ERROR

Under suitable regularity assumptions, at the estimation
point θ, and for p ∈ {0, 1}

AMSE[m̂(θ; p)] =
η2

2(Kk)B2(θ; p)

4︸ ︷︷ ︸
squared bias

+
R(Kk)σ2(θ)

nf (θ)︸ ︷︷ ︸
variance

where

B(θ; p) :=

{
m(2)(θ) + 2m(1)(θ)f (1)(θ)/f (θ), if p = 0,

m(2)(θ), if p = 1.
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OPTIMAL SMOOTHING

• The concentration parameter is not a scale factor.

• Bias and variance depend on k throughout γj(Kk),
j ∈ Z+. Specifically,

η2(Kk) =
1− γ2(k)

2
and R(Kk) =

1 + 2
∑∞

j=1 γ
2
j (k)

2π
.

• Differently from the Euclidean case, the shape of the
kernel and the smoothing degree come as not
separated in AMSE expression. Consequently, a
general structure for optimal smoothing degree is
hard to obtain!
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USING THE VON MISES KERNEL
For the von Mises kernel

η2(Kk) ≈ 1
k

and R(Kk) ≈
√

k
4π
.

The minimizer of the resulting AMSE over k yields

kAMSE =

{
2f (θ)nπ1/2B2(θ; p)

σ2(θ)

}2/5

,

(kAMSE goes to infinity, whereas euclidean bandwidth goes
to zero) which gives

inf
k>0

AMSE[m̂(θ; p)] ∼ n−4/5.

As expected, the convergence rate is the same as in the
Euclidean case.
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REGRESSION WITH CIRCULAR RESPONSE

When the response, say Θ, is circular and the predictor,
say ∆, takes values on a generic domain, the regression
function can be modeled as

m(δ) := arctan
(

E[sin(Θ)|∆ = δ]

E[cos(Θ)|∆ = δ]

)
,

which minimizes the angular risk

E[2{1− cos(Θ−m(∆))} | ∆ = δ].
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CIRCULAR RESPONSE: THE MODEL

Letting i.i.d rr. vv. {(∆i ,Θi), i = 1, · · · ,n}, assume

Θi = [m(∆i) + εi ](mod2π), i = 1, . . . ,n,

where the εis are i.i.d. random angles with zero mean
direction, and finite concentration.
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CIRCULAR RESPONSE: THE ESTIMATOR

Letting

m1(δ) := E[sin(Θ) | ∆ = δ] and m2(δ) := E[cos(Θ) | ∆ = δ]

A local estimator for m at δ could be defined as

m̂(δ) := arctan
(

m̂1(δ)

m̂2(δ)

)
,

with

m̂1(δ) :=
∑

sin(Θi)W (∆i , δ) and m̂2(δ) :=
∑

cos(Θi)W (∆i , δ),

where W is a local weight depending, as usual, on the
sample observation ∆i and the estimation point δ .
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LINEAR-CIRCULAR AND CIRCULAR-CIRCULAR
REGRESSION ESTIMATORS

Above estimator entails, by simple adaptations of the weight
function, a unified approach for linear and circular predic-
tor cases.

• When ∆ is linear, local constant and local linear fits are
obtained by using euclidean kernel-based weights.

• When ∆ is circular, local constant and local linear fits
can be obtained by using circular kernel-based weights.
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SELECTION OF THE SMOOTHING DEGREE

Due to the circular nature of m̂(δ), an accuracy measure
for it can be defined as

L[m̂(δ)] := E[2{1− (cos(m̂(δ)−m(δ))}],

Risk L is a circular version of MSE, and asymptotically (i.e.
when the difference m̂(δ)−m(δ) is small) corresponds to it.
In our practical experiments we have selected the
smoothing degree by applying cross-validation based on
an empirical version of risk L.
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HYPERSPHERICAL DATA

Circular data can be also represented as unit vectors in R2

(embedding approach).

In general, a unit vector in d ≥ 2 dimensions can be re-
garded as a point on the surface of the hypersphere

Sd−1 := {x ∈ Rd : ||x|| = 1},

and defines a hyperspherical (also spherical, directional)
observation.
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SPHERICAL PREDICTOR: THE MODEL

For a set of independent copies {(X i ,Yi), i = 1, . . . ,n} of a
Sd−1 × R-valued random vector (X ,Y ), assume

Yi = m(X i) + σ(X i)εi , i = 1, . . . ,n

where the εis are i.i.d. with E[εi ] = 0, Var[εi ] = 1, and
independent from the X is.
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TANGENT-NORMAL DECOMPOSITION

Given a ∈ Sd−1, the tangent-normal decomposition of a
vector b ∈ Sd−1 is

b = a cos(θ) + c sin(θ),

where θ ∈ [0, π] denotes the angle between a and b, i.e.
θ := arccos(b′a), and c is a vector orthogonal to a.
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A SERIES EXPANSION FOR FUNCTIONS DEFINED ON
THE SPHERE

Provided that m is smooth enough, for b near a, according
to the tangent-normal decomposition

m(b) = m(a) +

p∑
s=1

θs

s!
c′Ds

m̄(a)c⊗(s−1) + O
(
θp+1

)
where m̄(a) := m(a/||a||), and Ds

m̄(a) is the matrix of the
sth order derivatives of m̄ at a.
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LOCAL POLYNOMIALS FOR SPHERICAL-LINEAR
REGRESSION

A pth degree local polynomial estimator of m(x) can be
defined as the solution for β0 of

arg min
{β0,...,βp}

n∑
i=1

Yi − β0 −
p∑

j=1

θj
i

j!
ξ′iβjξ

⊗(j−1)
i


2

Kk(cos(θi)),

with Kk being a kernel defined on Sd−1, having mean
direction X i and evaluated at the point x.
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SPHERICAL WEIGHTS

Kk is a unimodal density defined on Sd−1 with

• rotational symmetry about its mean direction
µ = (0, . . . , 0, 1);
• concentration parameter k > 0 such that, for any

W ⊂ Sd−1 \ {µ},

lim
k→∞

∫
W

Kk(x ′µ)ωd−1(dx) = 0.

Example: Langevin density

Kk(cos(θ)) :=
κd/2−1eκcos(θ)

(2π)d/2Id/2−1(κ)
.
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LOCAL CONSTANT AND LOCAL LINEAR FITS

A local constant fit is

m̂(x; 0) =

∑n
i=1 Kk(cos(θi))Yi∑n

i=1 Kk(cos(θi))
.

For p = 1, letting

Y := [Y1 · · ·Yn]′, W := diag[Kk(cos(θ1)), . . . ,Kk(cos(θn))],

β := [β0 β′1]′ and X :=

1 θ1ξ
′
1

...
...

1 θnξ
′
n

 ,
the loss in our lest squares problem can be re-written as

||W1/2(Y − Xβ)||2.
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CONSTRAINED WEIGHTED LEAST SQUARES (1)
Minimization of the above loss over β admits a unique solu-
tion iff X′WX is nonsingular, and this is not the case for p = 1
because a block of matrix X factorizes as follows

 θ1ξ
′
1

...
θnξ
′
n

 =


θ1

sin(θ1)x ′1
...

θn
sin(θn)x ′n

 (I − xx′),

where I − xx ′ is singular.
Since x ′Dm̄(x) = 0, we can define m̂(x; 1) as the solution
for β0 of

argmin
β
||W1/2(Y − Xβ)||2 subject to Q′1β = 0,

with Q1 := [0 x′]′.
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CONSTRAINED WEIGHTED LEAST SQUARES (2)

This yields

m̂(x; 1) = e′1Q2(Q′2X
′WXQ2)−1Q′2X

′WY ,

where e1 := [1 0′]′, and Q2 is a (d + 1)×d matrix such that
Q′2Q1 = 0, and the matrix [Q1 Q2] is non-singular.

Q2 is a projector of the solution for β into the space of the
vectors orthogonal to Q1: its choice does not affect the
estimate.

Advances in Directional Statistics, Brussels 2014 Local regression for circular data 24/36



ACCURACY AND OPTIMAL SMOOTHING

Under suitable assumptions, when the Langevin kernel is
employed, for p ∈ {0, 1},

E[m̂(x; p)]−m(x) = O
(

d − 1
k

)
, Var[m̂(x; p)] = O

(
n−1k(d−1)/2

)
,

which yields

kAMSE ∼ n 2/(d+3), and inf
k>0

AMSE[m̂(x; p)] ∼ n−4/(d+3).
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ROTATIONAL EQUIVARIANCE

Let Rα denote the matrix performing rotations of vectors
in Sd−1 about the x-axis by the angle α ∈ (0, 2π). For a
whatever location x ∈ Sd−1, and p ∈ {0, 1},

m̂(x; p) = m̂R(Rαx; p),

where m̂R(·; p) is defined as m̂(·; p) when the sample is

{(RαX i ,RαY i), i = 1, . . . ,n}.
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SPHERICAL-SPHERICAL REGRESSION

Let (X ,Y ) be a Sd−1×Sq−1-valued random vector, Y (`) de-
note the `th cartesian coordinate of Y , and set

m`(x) := E[Y (`) | X = x].

The dependence of Y from X could be described by the
minimizer of

E[||Y −m(X )||2 | X ] subject to ||m(X )|| = 1,

which, at X = x, is

m(x) = ||[m1(x) · · ·mq(x)]||−1[m1(x) · · ·mq(x)]′.
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SPHERICAL-SPHERICAL REGRESSION MODEL

Given the random sample {(X i ,Y i), i = 1, . . . ,n}, assume

Y i = m(X i) + εi ,

where the εis, conditioned on the X is, are independent
random vectors with E[εi | X i ] = 0 and Var [εi | X i ] = �(X i).

And the estimator is

m̂(x; p) = ||[m̂1(x; p) · · · m̂q(x; p)]||−1[m̂1(x; p) · · · m̂q(x : p)]′.
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APPLICATION TO SNAILS MOVEMENTS (1)

We consider the data collected in Fisher and Lee (1992)
about distances and directions moved by small blue peri-
winkles after relocation.
The objective is to predict the angles given the distance
moved.

We compare the local linear (LL) and local constant (NW)
versions of our estimator, together with parametric fits in
Fisher & Lee (1992) (f&L), Presnell et al. (1998) (SPML), and
a direct trigonometric fit (trig).
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APPLICATION TO SNAILS MOVEMENTS (2)
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Fig1: Periwinkle data showing fitted models for local linear (LL)
and kernel (NW) weights, together with parametric fits given by
Fisher & Lee (1992) (f&L), Presnell et al. (1998) (SPML), and a
direct trigonometric fit (trig).

Advances in Directional Statistics, Brussels 2014 Local regression for circular data 30/36



APPLICATION TO WIND DIRECTIONS (1)

We consider the data used in Kato & Jones (2010) in which
the objective is to model and predict the wind direction at
noon, based on the wind direction at 6 a.m. at a weather
station in Texas.
They considered some parametric models based on the
Mobius transformation.

Here we compare our local constant (dashed) and local
linear (dotted) smoothers with a variant of their models
which uses von Mises errors (continuous line).
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APPLICATION TO WIND DIRECTIONS (2)
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TREND ESTIMATION IN CIRCULAR TIME SERIES

Given a time series of angles {Θt}Tt=1 , we assume

Θt = [m(t/T ) + εt ](mod2π)

where {εt}Tt=1 is a stationary process with E[sin(εt )] = 0.

Our smoothers for the circular response case could esti-
mate the trend function at t/T .

Here, ∆i = i/T , and the kernel is an euclidean one
supported on [0, 1].
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ORDER STATISTICS AND CIRCULAR RANK

If we treat the sample of angles Θ1, · · · ,Θn as linear data,
and rearrange them into ascending order, we obtain

Θ(1) ≤ · · · ≤ Θ(n).

Letting ri denote the rank of Θi among Θ1, · · · ,Θn
(
i.e. Θi

corresponds to the order statistics Θ(ri )
)
, the circular rank

of Θi , i ∈ {1, · · · ,n}, is defined as

ωi := 2πri/n.
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CIRCULAR QUANTILES ESTIMATION

Let Θ1, · · · ,Θn be a random sample from an absolutely
continuous circular distribution.
Natural local smoothing of αth quantile is

q̂(α) := arctan(q̂1(α)/q̂2(α)),

where

q̂1(α) :=
n∑

i=1

Kk(ωi − 2πα) sin(Θ(ri )),

and

q̂2(α) :=
n∑

i=1

Kk(ωi − 2πα) cos(Θ(ri )).
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