Assessment of significant features in nonparametric curve estimates with circular data

Rosa M. Crujeiras, María Oliveira and Alberto Rodríguez-Casal

Department of Statistics and Operations Research University of Santiago de Compostela

> Department of Mathematical Sciences Durham University

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

Assessment of significant features in nonparametric curve estimates with circular data

Rosa M. Crujeiras, María Oliveira and Alberto Rodríguez-Casal

Department of Statistics and Operations Research University of Santiago de Compostela

> Department of Mathematical Sciences Durham University

Smoothing methods for circular data

Circular kernel density estimation

Circular kernel density estimator

Given a random sample of angles $\Theta_1, \ldots, \Theta_n \in [0, 2\pi)$ from some unknown circular density f, the circular KDE is given by:

$$\hat{f}(\theta;\nu) = \frac{1}{n} \sum_{i=1}^{n} K_{\nu}(\theta - \Theta_i)$$

 K_{ν} is a circular kernel function with concentration parameter $\nu > 0$.

Taking the von Mises density as kernel:

$$\hat{f}(\theta;\nu) = \frac{1}{n2\pi I_0(\nu)} \sum_{i=1}^n e^{\nu \cos(\theta - \Theta_i)}$$

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

Smoothing methods for circular data

-Smooth circular-linear regression

Circular-linear regression model

Let $\{(\Theta_i, Y_i), i = 1, ..., n\}$ be a random sample from (Θ, Y) a circular and a linear random variables, respectively. The relation between these variables can be modeled by

$$Y_i = f(\Theta_i) + \sigma(\Theta_i)\varepsilon_i, \quad i = 1, \dots, n,$$

where f denotes the regression function.

- Kernel smoother
- Spline smoother

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

- Smooth circular-linear regression

Local linear estimator

The local linear regression estimate for $f(\theta)$ and $f'(\theta)$ at an angle θ are given by $\hat{f}(\theta;\nu)=\hat{a}$ and $\hat{f}'(\theta;\nu)=\hat{b},$ where

$$(\hat{a}, \hat{b}) = \arg\min_{(a,b)} \sum_{i=1}^{n} K_{\nu}(\theta - \Theta_i) \left[Y_i - (a + b\sin(\theta - \Theta_i))\right]^2$$

 $K_{
u}$ is a circular kernel function with concentration parameter u .

Di Marzio, M., Panzera A. and Taylor, C.C. (2009) Local polynomial regression for circular predictors. *Statistics & Probability Letters*, **79**, 2066–2075.

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

Smoothing methods for circular data

-Smooth circular-linear regression

Periodic smoothing spline estimator

The periodic smoothing spline estimator is given by the smooth function \hat{f}_{λ} that minimizes the penalized least squares criterion

$$S(g) = \sum_{i=1}^{n} \left[Y_i - g(\Theta_i) \right]^2 + \lambda \int_0^T \left[g''(\theta) \right]^2 d\theta$$

over the class of twice c.d. periodic functions with period $T = 2\pi$.

- It is shown that f_λ is a periodic cubic spline on [Θ₁, Θ_{n+1}] with knots at the points Θ_i, i = 1,...,n + 1, where Θ_{n+1} = Θ₁ + T.
- The parameter λ plays the role of the smoothing parameter.

Cogburn, R. and Davis, H.T. (1974) Periodic splines and spectral estimation. *Annals of Statistics*, **2**, 1108–1126.

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-Smoothing methods for circular data

└─ The Holy Grail of smoothing

The Holy Grail of smoothing

Finding a *suitable bandwidth* for smoothing a density or a regression curve:

Plug-in rules

Cross-validation

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

The Holy Grail of smoothing

Beyond *bandwidth* selection...

Forget about recovering the original curve... and try to identify significant underlying structures, such as peaks and valleys in the density or regression.

Family of smoothers for a density model

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-SiZer for circular data

The idea of CircSiZer method

- CircSiZer is an adaptation to circular data of the original SiZer proposed by Chaudhuri and Marron (1999) for linear data.
- CircSiZer considers nonparametric curve estimates for a wide range of smoothing parameters (τ).
- CircSiZer addresses the question of which features are really there.
- CircSiZer assesses the significance of such features by constructing confidence intervals for the derivative of the smoothed underlying curve at each location θ ∈ [0, 2π) and scale τ, f'(θ; τ) ≡ 𝔼(f'(θ; τ)).

Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structures in curves. Journal of the American Statistical Association, 94, 807–823.

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

-SiZer for circular data

Confidence interval

Given a significance level α and for a fixed value of $\tau>0$ and with $\theta\in[0,2\pi),$ confidence intervals are of the form

$$\left(\widehat{f}'(\theta;\tau) - q^{(1-\alpha/2)} \cdot \widehat{\mathsf{sd}}(\widehat{f}'(\theta;\tau)), \widehat{f}'(\theta;\tau) - q^{(\alpha/2)} \cdot \widehat{\mathsf{sd}}(\widehat{f}'(\theta;\tau))\right)$$

- $\hat{f}'(\theta;\tau)$ is the estimator of the derivative of the curve.
- $q^{(1-\alpha/2)}$ and $q^{(\alpha/2)}$ are appropriate quantiles.
- $\widehat{sd}(\widehat{f}'(\theta;\tau))$ is an estimator of the std of $\widehat{f}'(\theta;\tau)$.

Oliveira, M., RMC and Rodríguez–Casal, A. (2014) CircSiZer: an exploratory tool for circular data. Journal of Environmental and Ecological Statistics, 21, 143–159.

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-Some insights in the CircSiZer

Quantiles: normal approximation

Pointwise normal quantiles

 $q^{(1-\alpha/2)}$ and $q^{(\alpha/2)}$ are the quantiles of order $(1-\alpha/2)$ and $\alpha/2$ of the standard normal distribution.

-Some insights in the CircSiZer

Quantiles: normal approximation

- ▶ Pointwise normal quantiles $q^{(1-\alpha/2)}$ and $q^{(\alpha/2)}$ are the quantiles of order $(1-\alpha/2)$ and $\alpha/2$ of the standard normal distribution.
- Simultaneous normal quantiles $q^{(1-\alpha/2)} = -q^{(\alpha/2)} = \Phi^{-1} \left\{ \frac{1+(1-\alpha)^{1/m(\tau)}}{2} \right\} \text{ where } \Phi^{-1} \text{ is the inverse}$ of the standard normal distribution and $m(\tau) = \frac{n}{\operatorname{avg}_{\theta \in \mathcal{D}_{\tau}} ESS(\theta; \tau)}$

where $ESS(\theta; \tau)$ is the Effective Sample Size for the pair (θ, τ) and $\mathcal{D}_{\tau} = \{\theta : ESS(\theta; \tau) \ge 5\}.$

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-Some insights in the CircSiZer

Quantiles: bootstrap method

▶ Pointwise bootstrap quantiles $q^{(1-\alpha/2)}$ and $q^{(\alpha/2)}$ are the sample quantiles of order $(1-\alpha/2)$ and $\alpha/2$ of $Z_1^*(\theta; \tau), \ldots, Z_B^*(\theta; \tau)$ where

$$Z_b^*(\theta;\tau) = \frac{\hat{f}'(\theta;\tau)^{*b} - \hat{f}'(\theta;\tau)}{\widehat{\mathsf{sd}}(\hat{f}'(\theta;\tau)^{*b})}, \ b = 1,\dots, B$$

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-Some insights in the CircSiZer

Quantiles: bootstrap method

▶ Pointwise bootstrap quantiles $q^{(1-\alpha/2)}$ and $q^{(\alpha/2)}$ are the sample quantiles of order $(1-\alpha/2)$ and $\alpha/2$ of $Z_1^*(\theta; \tau), \ldots, Z_B^*(\theta; \tau)$ where

$$Z_b^*(\theta;\tau) = \frac{\hat{f}'(\theta;\tau)^{*b} - \hat{f}'(\theta;\tau)}{\widehat{\mathsf{sd}}(\hat{f}'(\theta;\tau)^{*b})}, \ b = 1,\dots, B$$

• Simultaneous bootstrap quantiles $q^{(1-\alpha/2)}$ is the sample quantile of order $(1-\alpha/2)$ of $Z_{\sup}^{*1}, \ldots, Z_{\sup}^{*B}$ and $q^{(\alpha/2)}$ is the sample quantile of order $\alpha/2$ of $Z_{\inf}^{*1}, \ldots, Z_{\inf}^{*B}$ where $Z_{\inf}^{*b} = \inf_{\theta \in \mathcal{D}_{\tau}^{*}} Z_{b}^{*}(\theta; \tau)$ and $Z_{\sup}^{*b} = \sup_{\theta \in \mathcal{D}_{\tau}^{*}} Z_{b}^{*}(\theta; \tau), \quad b = 1, \ldots, B$

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

-Some insights in the CircSiZer

Standard deviation (density)

$$\begin{aligned} \widehat{\operatorname{var}}\left(\widehat{f}'(\theta;\nu)\right) &= \widehat{\operatorname{var}}\left(\frac{1}{n}\sum_{i=1}^{n}K'_{\nu}\left(\theta-\Theta_{i}\right)\right) \\ &= \frac{1}{n}s^{2}\left(K'_{\nu}(\theta-\Theta_{1}),\ldots,K'_{\nu}(\theta-\Theta_{n})\right) \end{aligned}$$

where s^2 is the usual sample variance of n data, which in this context is formed by the derivative of the kernel centered at each sample value Θ_i , with i = 1, ..., n.

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014) Assessment of significant features in circular curves

-Some insights in the CircSiZer

Standard deviation (regression)

The estimator of the derivative of the regression function evaluated in a grid of angles in the interval $[0, 2\pi)$, $\boldsymbol{\theta} = (\theta_1, \dots, \theta_N)^t$, can be written as

$$\hat{f}_{\theta}' = HY$$

where H is an $(N \times n)$ matrix and \boldsymbol{Y} is the response vector.

• For fixed design:

$$\operatorname{var}(\hat{f}_{\theta}') = H\Sigma H^t$$

where $\Sigma = \operatorname{diag} \left\{ \sigma^2(\Theta_1), \dots, \sigma^2(\Theta_n) \right\}.$

► For random design, the standard deviation is estimated by bootstrap.

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

-CircSiZer construction

```
Construction of CircSiZer map
```

For each pair (θ, τ) , with θ varying in $[0, 2\pi)$ and $\tau > 0$:

- Compute the confidence interval for $f'(\theta; \tau)$.
- If the interval is
 - ► above zero \rightarrow the smoothed curve is significantly increasing \rightarrow the location corresponding to the pair (θ, τ) is colored blue.
 - ▶ below zero \rightarrow the smoothed curve is significantly decreasing \rightarrow the location corresponding to the pair (θ, τ) is colored red.
 - ► contains zero → the derivative is not sig. dif. from zero → the location corresponding to the pair (θ, τ) is colored purple.
 - Location $(\theta, -\log_{10}(\nu))$ is coloured gray if there is not enough data.

-CircSiZer construction

```
Construction of CircSiZer map
```

For each pair (θ, τ) , with θ varying in $[0, 2\pi)$ and $\tau > 0$:

- Compute the confidence interval for $f'(\theta; \tau)$.
- If the interval is
 - ► above zero \rightarrow the smoothed curve is significantly increasing \rightarrow the location corresponding to the pair (θ, τ) is colored blue.
 - ▶ below zero \rightarrow the smoothed curve is significantly decreasing \rightarrow the location corresponding to the pair (θ, τ) is colored red.
 - ► contains zero → the derivative is not sig. dif. from zero → the location corresponding to the pair (θ, τ) is colored purple.
 - Location $(\theta, -\log_{10}(\nu))$ is coloured gray if there is not enough data.

-CircSiZer performance

CircSiZer performance (density)

Results based on 1000 samples of size n = 250:

- Pointwise vs. simultaneous.
- Normal vs. bootstrap.
- CircSiZer for detecting modes?

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer

- CircSiZer performance

Figure: Differences between empirical and nominal coverage: normal (left) and bootstrap (right). Model M2 (von Mises).

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer

- CircSiZer performance

Figure: Differences between empirical and nominal coverage: normal (left) and bootstrap (right). Uniform model.

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer

CircSiZer performance

Figure: Global coverages for simultaneous normal (solid line) and simultaneous bootstrap (dashed line) for a range of smoothing values.

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014) Assessment of significant features in circular curves

- CircSiZer performance

	Modes	-2.00	-1.78	-1.56	-1.33	-1.11	-0.89	-0.67	-0.44	-0.22	0.00
PN	0	220	159	104	22	4	0	0	0	0	0
	1	601	706	815	945	994	1000	1000	1000	1000	1000
	2	153	124	79	33	2	0	0	0	0	0
	3	25	11	2	0	0	0	0	0	0	0
	4	1	0	0	0	0	0	0	0	0	0
SB	0	997	995	986	915	620	114	2	0	0	0
	1	3	5	14	85	380	886	998	1000	1000	1000

Table: Number of modes flagged by CircSiZer map with pointwise normal and simultaneous bootstrap confidence intervals for model M2.

M2

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014) Assessment of significant features in circular curves

- CircSiZer

- CircSiZer performance

M18

	Modes	-2.00	-1.78	-1.56	-1.33	-1.11	-0.89	-0.67	-0.44	-0.22	0.00
PN	0	6	0	0	0	0	0	0	0	0	0
	1	219	187	234	553	966	998	1000	1000	1000	1000
	2	489	464	484	406	33	2	0	0	0	0
	3	282	343	279	40	1	0	0	0	0	0
	4	4	6	3	1	0	0	0	0	0	0
SB	0	700	341	73	2	0	0	0	0	0	0
	1	288	593	813	977	1000	1000	1000	1000	1000	1000
	2	12	62	112	21	0	0	0	0	0	0
	3	0	4	2	0	0	0	0	0	0	0

Table: Number of modes flagged by CircSiZer map with pointwise normal and simultaneous bootstrap confidence intervals for model M18.

- CircSiZer

- CircSiZer performance

KDEs for a sample with n = 250 data. Simultaneous CircSizer map (center) and pointwise CircSizer map (right).

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer performance

CircSiZer performance (regression)

Models:

$$f_1(\theta) = \sin(\theta)$$

$$f_2(\theta) = \sin(\theta - 1.2\pi) + 3\exp(-10(15(\theta - \pi)/(2\pi)^2))$$

- Performance with local linear and spline smoothers:
 - Fixed design.
 - Simultaneous bootstrap.

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

- CircSiZer

- CircSiZer performance

Figure: Regression estimation for a sample with n = 250 data. Center: based on local linear. Right: based on periodic spline. (Bootstrap global)

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer

- CircSiZer performance

Figure: Regression estimation for a sample with n = 250 data. Center: based on local linear. Right: based on periodic spline. (Bootstrap global)

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

- CircSiZer performance

Take home message

- ▶ Pointwise normal (PN) is preferred to pointwise bootstrap.
- Simultaneous bootstrap (SB) is preferred to simultaneous normal.
- Both PN and SB provide useful information...

- CircSiZer

-CircSiZer performance

Extensions

- Circular–circular?
- Linear–circular?
- Higher dimensions?
- ... visualization...

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)

DIY with NPCirc

Library NPCirc

Oliveira, M., Crujeiras, R. M. and Rodríguez–Casal, A. (2013) NPCirc: An R package for nonparametric circular methods. *R package version 2.0.0.* URL http://www.R-project.org/package=NPCirc.

Data set	Description
 circsizer.density circsizer.map circsizer.regression	 CircSiZer map for density CircSiZer map CircSiZer map for regression

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

-DIY with NPCirc

Library NPCirc

Oliveira, M., Crujeiras, R. M. and Rodríguez–Casal, A. (2013) NPCirc: An R package for nonparametric circular methods. *R package version 2.0.0.* URL http://www.R-project.org/package=NPCirc.

Data set	Description
 circsizer.density circsizer.map circsizer.regression	 CircSiZer map for density CircSiZer map CircSiZer map for regression

John M. Chambers Statistical Software Award 2014

Crujeiras, Oliveira and Rodríguez–Casal (ADISTA 2014)

DIY with NPCirc

Thanks for your attention!

Crujeiras, Oliveira and Rodríguez-Casal (ADISTA 2014)